RESUMO
Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.
Assuntos
Proteínas de Transporte de Ânions , Synechocystis , Halorrodopsinas/metabolismo , Rodopsinas Microbianas/metabolismo , Synechocystis/metabolismo , Ânions/metabolismo , Sulfatos/metabolismoRESUMO
Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.
Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Chlorella/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Alcanos/metabolismo , Substituição de Aminoácidos , Aminoácidos/metabolismo , Bicarbonatos/metabolismo , Biocatálise , Dióxido de Carbono/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Ligação de Hidrogênio , Luz , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Fótons , Conformação Proteica , TemperaturaRESUMO
Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Polímeros/química , Propilaminas/química , Prata/química , Análise Espectral Raman/métodos , Estudos de Viabilidade , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Tensoativos/químicaRESUMO
Sensory rhodopsins (SRs) belong to a subfamily of heptahelical transmembrane proteins containing a retinal chromophore. These photoreceptors mediate the cascade of vision in animal eyes and phototaxis in archaebacteria and unicellular flagellated algae. Signal transduction by these photoreceptors occurs by means of transducer proteins. The two archaebacterial sensory rhodopsins SRI and SRII are coupled to the membrane-bound HtrI and HtrII transducer proteins. Activation of these proteins initiates phosphorylation cascades that modulate the flagellar motors, resulting in either attractant (SRI) or repellent (SRII) phototaxis. In addition, transducer-free SRI and SRII were shown to operate as proton pumps, analogous to bacteriorhodopsin. Here, we present the x-ray structure of SRII from Natronobacterium pharaonis (pSRII) at 2.1-A resolution, revealing a unique molecular architecture of the retinal-binding pocket. In particular, the structure of pSRII exhibits a largely unbent conformation of the retinal (as compared with bacteriorhodopsin and halorhodopsin), a hydroxyl group of Thr-204 in the vicinity of the Schiff base, and an outward orientation of the guanidinium group of Arg-72. Furthermore, the structure reveals a putative chloride ion that is coupled to the Schiff base by means of a hydrogen-bond network and a unique, positively charged surface patch for a probable interaction with HtrII. The high-resolution structure of pSRII provides a structural basis to elucidate the mechanisms of phototransduction and color tuning.
Assuntos
Proteínas Arqueais , Bacteriorodopsinas/química , Carotenoides , Halorrodopsinas , Rodopsinas Sensoriais , Animais , Bacteriorodopsinas/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Natronobacterium/química , Natronobacterium/genética , Conformação Proteica , Retinaldeído/química , Eletricidade EstáticaRESUMO
Spectra are presented from a single 3D microcrystal of bacteriorhodopsin (bR) cooled to 170 K under various illumination conditions. This set is necessary and sufficient to assign the relevant crystal reference spectra. A spectral decomposition of the difference spectrum obtained following the trapping protocol of Royant et al. (2000) (Nature 406, 645-648) is given, confirming that the low temperature L-intermediate was the species that dominated the structural rearrangements previously reported. Smaller contributions from the K and M spectral intermediates are also quantified. Mechanistic insights derived from the X-ray structures of the early bR intermediates are discussed.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/efeitos da radiação , Temperatura Baixa , Cristalografia por Raios X , Modelos Moleculares , Fotoquímica , Espectrofotometria , Eletricidade EstáticaRESUMO
A wide variety of mechanisms are used to generate a proton-motive potential across cell membranes, a function lying at the heart of bioenergetics. Bacteriorhodopsin, the simplest known proton pump, provides a paradigm for understanding this process. Here we report, at 2.1 A resolution, the structural changes in bacteriorhodopsin immediately preceding the primary proton transfer event in its photocycle. The early structural rearrangements propagate from the protein's core towards the extracellular surface, disrupting the network of hydrogen-bonded water molecules that stabilizes helix C in the ground state. Concomitantly, a bend of this helix enables the negatively charged primary proton acceptor, Asp 85, to approach closer to the positively charged primary proton donor, the Schiff base. The primary proton transfer event would then neutralize these two groups, cancelling their electrostatic attraction and facilitating a relaxation of helix C to a less strained geometry. Reprotonation of the Schiff base by Asp 85 would thereby be impeded, ensuring vectorial proton transport. Structural rearrangements also occur near the protein's surface, aiding proton release to the extracellular medium.
Assuntos
Bacteriorodopsinas/química , Estrutura Secundária de Proteína , Bombas de Próton/química , Bacteriorodopsinas/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Fotoquímica , Bombas de Próton/metabolismoRESUMO
Bacteriorhodopsin is the simplest known photon-driven proton pump and as such provides a model for the study of a basic function in bioenergetics. Its seven transmembrane helices encompass a proton translocation pathway containing the chromophore, a retinal molecule covalently bound to lysine 216 through a protonated Schiff base, and a series of proton donors and acceptors. Photoisomerization of the all-trans retinal to the 13-cis configuration initiates the vectorial translocation of a proton from the Schiff base, the primary proton donor, to the extracellular side, followed by reprotonation of the Schiff base from the cytoplasm. Here we describe the high-resolution X-ray structure of an early intermediate in the photocycle of bacteriorhodopsin, which is formed directly after photoexcitation. A key water molecule is dislocated, allowing the primary proton acceptor, Asp 85, to move. Movement of the main-chain Lys 216 locally disrupts the hydrogen-bonding network of helix G, facilitating structural changes later in the photocycle.
Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Cristalografia por Raios X , Luz , Modelos Moleculares , Dados de Sequência Molecular , FotoquímicaRESUMO
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.
Assuntos
Proteínas de Bactérias/química , Bacteriorodopsinas/química , Lipídeos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Transporte de Íons , Conformação Proteica , Prótons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água/químicaRESUMO
A comprehensive understanding of structure-function relationships of proteins requires their structures to be elucidated to high resolution. With most membrane proteins this has not been accomplished so far, mainly because of their notoriously poor crystallizability. Here we present a completely detergent-free procedure for the incorporation of a native purple membrane into a monoolein-based lipidic cubic phase, and subsequent crystallization of three-dimensional bacteriorhodopsin crystals therein. These crystals exhibit comparable X-ray diffraction quality and mosaicity, and identical crystal habit and space group to those of bacteriorhodopsin crystals that are grown from detergent-solubilized protein in cubic phase.