Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Blood Adv ; 8(13): 3562-3575, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38574299

RESUMO

ABSTRACT: Multiple myeloma is characterized by frequent clinical relapses after conventional therapy. Recently, chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA) has been established as a treatment option for patients with relapsed or refractory disease. However, although >70% of patients initially respond to this treatment, clinical relapse and disease progression occur in most cases. Recent studies showed persistent expression of BCMA at the time of relapse, indicating that immune-intrinsic mechanisms may contribute to this resistance. Although there were no preexisting T-cell features associated with clinical outcomes, we found that patients with a durable response to CAR T-cell treatment had greater persistence of their CAR T cells than patients with transient clinical responses. They also possessed a significantly higher proportion of CD8+ T-effector memory cells. In contrast, patients with short-lived responses to treatment have increased frequencies of cytotoxic CD4+ CAR T cells. These cells expand in vivo early after infusion but express exhaustion markers (hepatitis A virus cellular receptor 2 [HAVCR2] and T-cell immunoglobulin and mucin domain-containing-3 [TIGIT]) and remain polyclonal. Finally, we demonstrate that nonclassical monocytes are enriched in the myeloma niche and may induce CAR T-cell dysfunction through mechanisms that include transforming growth factor ß. These findings shed new light on the role of cytotoxic CD4+ T cells in disease progression after CAR T-cell therapy.


Assuntos
Antígeno de Maturação de Linfócitos B , Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Recidiva , Masculino , Feminino , Exaustão das Células T
2.
Nature ; 626(7999): 626-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326614

RESUMO

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Assuntos
Evolução Molecular , Imunoterapia Adotiva , Linfoma Cutâneo de Células T , Mutação , Linfócitos T , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Imunoterapia Adotiva/métodos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
3.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37781607

RESUMO

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.

4.
Cancer Immunol Res ; 11(8): 1030-1043, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37429007

RESUMO

The immune system includes an array of specialized cells that keep us healthy by responding to pathogenic cues. Investigations into the mechanisms behind immune cell behavior have led to the development of powerful immunotherapies, including chimeric-antigen receptor (CAR) T cells. Although CAR T cells have demonstrated efficacy in treating blood cancers, issues regarding their safety and potency have hindered the use of immunotherapies in a wider spectrum of diseases. Efforts to integrate developments in synthetic biology into immunotherapy have led to several advancements with the potential to expand the range of treatable diseases, fine-tune the desired immune response, and improve therapeutic cell potency. Here, we examine current synthetic biology advances that aim to improve on existing technologies and discuss the promise of the next generation of engineered immune cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva , Imunoterapia , Neoplasias/terapia
5.
Immunol Rev ; 320(1): 83-99, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491719

RESUMO

Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Imunoterapia
6.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520493

RESUMO

T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.


Assuntos
Microvilosidades , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Linfócitos T , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Humanos , Antígenos
7.
J Nucl Med ; 64(1): 137-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981900

RESUMO

For the past several decades, chimeric antigen receptor T-cell therapies have shown promise in the treatment of cancers. These treatments would greatly benefit from companion imaging biomarkers to follow the trafficking of T cells in vivo. Methods: Using synthetic biology, we engineered T cells with a chimeric receptor synthetic intramembrane proteolysis receptor (SNIPR) that induces overexpression of an exogenous reporter gene cassette on recognition of specific tumor markers. We then applied a SNIPR-based PET reporter system to 2 cancer-relevant antigens, human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor variant III (EGFRvIII), commonly expressed in breast and glial tumors, respectively. Results: Antigen-specific reporter induction of the SNIPR PET T cells was confirmed in vitro using green fluorescent protein fluorescence, luciferase luminescence, and the HSV-TK PET reporter with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG). T cells associated with their target antigens were successfully imaged using PET in dual-xenograft HER2+/HER2- and EGFRvIII+/EGFRvIII- animal models, with more than 10-fold higher [18F]FHBG signals seen in antigen-expressing tumors versus the corresponding controls. Conclusion: The main innovation found in this work was PET detection of T cells via specific antigen-induced signals, in contrast to reporter systems relying on constitutive gene expression.


Assuntos
Neoplasias da Mama , Glioblastoma , Animais , Humanos , Feminino , Linfócitos T , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Genes Reporter
8.
Science ; 378(6625): eaba1624, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520915

RESUMO

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Assuntos
Terapia de Imunossupressão , Imunoterapia Adotiva , Interleucina-2 , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Engenharia Celular , Receptores Notch/metabolismo , Terapia de Imunossupressão/métodos
9.
Science ; 378(6625): 1227-1234, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520914

RESUMO

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Redes Reguladoras de Genes , Genes Sintéticos , Linfócitos T , Fatores de Transcrição , Dedos de Zinco , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Biologia Sintética/métodos , Linfócitos T/metabolismo , Linfócitos T/transplante , Engenharia Genética
10.
Sci Transl Med ; 14(670): eabm1463, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350984

RESUMO

Chimeric antigen receptors (CARs) repurpose natural signaling components to retarget T cells to refractory cancers but have shown limited efficacy in persistent, recurrent malignancies. Here, we introduce "CAR Pooling," a multiplexed approach to rapidly identify CAR designs with clinical potential. Forty CARs with signaling domains derived from a range of immune cell lineages were evaluated in pooled assays for their ability to stimulate critical T cell effector functions during repetitive stimulation that mimics long-term tumor antigen exposure. Several domains were identified from the tumor necrosis factor (TNF) receptor family that have been primarily associated with B cells. CD40 enhanced proliferation, whereas B cell-activating factor receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) promoted cytotoxicity. These functions were enhanced relative to clinical benchmarks after prolonged antigen stimulation, and CAR T cell signaling through these domains fell into distinct states of memory, cytotoxicity, and metabolism. BAFF-R CAR T cells were enriched for a highly cytotoxic transcriptional signature previously associated with positive clinical outcomes. We also observed that replacing the 4-1BB intracellular signaling domain with the BAFF-R signaling domain in a clinically validated B cell maturation antigen (BCMA)-specific CAR resulted in enhanced activity in a xenotransplant model of multiple myeloma. Together, these results show that CAR Pooling is a general approach for rapid exploration of CAR architecture and activity to improve the efficacy of CAR T cell therapies.


Assuntos
Recidiva Local de Neoplasia , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia/metabolismo , Antígeno de Maturação de Linfócitos B , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T , Imunoterapia , Transdução de Sinais
11.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36066491

RESUMO

Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFß or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFß and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFß and IFNα levels in COVID-19 infection associated with disease severity.


Assuntos
COVID-19 , Proliferação de Células , Humanos , Células Matadoras Naturais , Fenótipo , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta
12.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758909

RESUMO

IL-12 is an essential cytokine involved in the generation of memory or memory-like NK cells. Mouse cytomegalovirus infection triggers NK receptor-induced, ligand-specific IL-12-dependent NK cell expansion, yet specific IL-12 stimulation ex vivo leading to NK cell proliferation and expansion is not established. Here, we show that IL-12 alone can sustain human primary NK cell survival without providing IL-2 or IL-15 but was insufficient to promote human NK cell proliferation. IL-12 signaling analysis revealed STAT5 phosphorylation and weak mTOR activation, which was enhanced by activating NK receptor upregulation and crosslinking leading to STAT5-dependent, rapamycin-sensitive, or TGFß-sensitive NK cell IL-12-dependent expansion, independently of IL-12 receptor upregulation. Prolonged IL-2 culture did not impair IL-12-dependent ligand-specific NK cell expansion. These findings demonstrate that activating NK receptor stimulation promotes differential IL-12 signaling, leading to human NK cell expansion, and suggest adopting strategies to provide IL-12 signaling in vivo for ligand-specific IL-2-primed NK cell-based therapies.


Assuntos
Interleucina-12 , Fator de Transcrição STAT5 , Proliferação de Células , Humanos , Interleucina-2/farmacologia , Ligantes , Receptores de Células Matadoras Naturais
13.
Cell ; 185(8): 1431-1443.e16, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427499

RESUMO

Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Receptores Artificiais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Biologia Sintética , Linfócitos T
14.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
15.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910979

RESUMO

Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/terapia , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910981

RESUMO

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening "on-target/off-tumor" toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


Assuntos
Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva , Mesotelina , Camundongos , Placenta , Gravidez , Receptores de Antígenos de Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Nanotechnol ; 16(2): 214-223, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33318641

RESUMO

Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile biomaterial functionalization platform can provide new opportunities for immunotherapies.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Nanopartículas/química , Neoplasias/terapia , Proteínas/química , Proteínas/imunologia , Proteínas/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante
18.
Science ; 370(6520): 1099-1104, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243890

RESUMO

Living cells often identify their correct partner or target cells by integrating information from multiple receptors, achieving levels of recognition that are difficult to obtain with individual molecular interactions. In this study, we engineered a diverse library of multireceptor cell-cell recognition circuits by using synthetic Notch receptors to transcriptionally interconnect multiple molecular recognition events. These synthetic circuits allow engineered T cells to integrate extra- and intracellular antigen recognition, are robust to heterogeneity, and achieve precise recognition by integrating up to three different antigens with positive or negative logic. A three-antigen AND gate composed of three sequentially linked receptors shows selectivity in vivo, clearing three-antigen tumors while ignoring related two-antigen tumors. Daisy-chaining multiple molecular recognition events together in synthetic circuits provides a powerful way to engineer cellular-level recognition.


Assuntos
Comunicação Celular/imunologia , Engenharia Celular , Receptores de Antígenos Quiméricos/imunologia , Receptores Notch/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores Notch/genética , Transcrição Gênica
19.
Blood Adv ; 4(13): 2899-2911, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32589729

RESUMO

Cancer cells commonly develop resistance to immunotherapy by loss of antigen expression. Combinatorial treatments that increase levels of the target antigen on the surface of cancer cells have the potential to restore efficacy to immunotherapy. Here, we use our CRISPR interference- and CRISPR activation-based functional genomics platform to systematically identify pathways controlling cell surface expression of the multiple myeloma immunotherapy antigen B-cell maturation antigen (BCMA). We discovered that pharmacologic inhibition of HDAC7 and the Sec61 complex increased cell surface BCMA, including in primary patient cells. Pharmacologic Sec61 inhibition enhanced the antimyeloma efficacy of a BCMA-targeted antibody-drug conjugate. A CRISPR interference chimeric antigen receptor T cells (CAR-T cells) coculture screen enabled us to identify both antigen-dependent and antigen-independent mechanisms controlling response of myeloma cells to BCMA-targeted CAR-T cells. Thus, our study shows the potential of CRISPR screens to uncover mechanisms controlling response of cancer cells to immunotherapy and to suggest potential combination therapies.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T
20.
Commun Biol ; 3(1): 296, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518350

RESUMO

We have developed a chimeric antigen receptor (CAR) platform that functions as a modular system to address limitations of traditional CAR therapies. An inert form of the human NKG2D extracellular domain (iNKG2D) was engineered as the ectodomain of the CAR to generate convertibleCARTM-T cells. These cells were specifically directed to kill antigen-expressing target cells only in the presence of an activating bispecific adapter comprised of an iNKG2D-exclusive ULBP2-based ligand fused to an antigen-targeting antibody (MicAbodyTM). Efficacy against Raji tumors in NSG mice was dependent upon doses of both a rituximab-based MicAbody and convertibleCAR-T cells. We have also demonstrated that the exclusive ligand-receptor partnering enabled the targeted delivery of a mutant form of IL-2 to selectively promote the expansion of convertibleCAR-T cells in vitro and in vivo. By altering the Fv domains of the MicAbody or the payload fused to the orthogonal ligand, convertibleCAR-T cells can be readily targeted or regulated.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Mutação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores de Antígenos Quiméricos/imunologia , Sequência de Aminoácidos , Animais , Apoptose , Proliferação de Células , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interleucina-2/genética , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos Quiméricos/genética , Homologia de Sequência , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA