Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38135931

RESUMO

This case study assesses the valorization of industrial wastewater streams for bioenergy generation in an industrial munition facility. On-site pilot-scale demonstrations were performed to investigate the feasibility of algal growth in the target wastewater on a larger outdoor scale. An exploratory field study followed by an optimized one were carried out using two 1000 L open raceway ponds deployed within a greenhouse at an industrial munition facility. An online system allowed for constant monitoring of operational parameters such as temperature, pH, light intensity, and dissolved oxygen within the ponds. The original algal seed evolved into an open-air resilient consortium of green microalgae and cyanobacteria that were identified and characterized successfully. Weekly measurements of the level of nutrients in pond liquors were performed along with the determination of the algal biomass to quantitatively evaluate growth yields. After harvesting algae from the ponds, the biomass was concentrated and evaluated for oil content and biochemical methane potential (BMP) to provide an estimate of the algae-based energy production. Additionally, the correlation among biomass, culturing conditions, oil content, and BMP was evaluated. The higher average areal biomass productivity achieved during the summer months was 23.9 ± 0.9 g/m2d, with a BMP of 350 scc/gVS. An oil content of 22 wt.% was observed during operation under low nitrogen loads. Furthermore, a technoeconomic analysis and life cycle assessment demonstrated the viability of the proposed wastewater valorization scenario and aided in optimizing process performance towards further scale-up.

2.
Physiol Mol Biol Plants ; 29(5): 755-767, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363416

RESUMO

Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.

3.
Plant Sci ; 333: 111723, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37142098

RESUMO

Owing to the essential requirement of phosphorus (P) for growth and development, plants tightly control inorganic phosphate (Pi) homeostasis. SPX-PHR regulatory circuit not only control phosphate homeostasis responses but also root mycorrhization by arbuscular mycorrhiza (AM) fungi. Besides sensing Pi deficiency, SPX (SYG1/Pho81/XPR1) proteins also control the transcription of P starvation inducible (PSI) genes by blocking the activity of PHR1 (PHOSPHATE STARVATION RESPONSE1) homologs in plants under Pi-sufficient conditions. However, the roles of SPX members in Pi homeostasis and AM fungi colonization remain to be fully recognized in tomato. In this study, we identified 17 SPX-domain containing members in the tomato genome. Transcript profiling revealed the high Pi-specific nature of their activation. Four SlSPX members have also induced in AM colonized roots. Interestingly, we found that SlSPX1 and SlSPX2 are induced by P starvation and AM fungi colonization. Further, SlSPX1 and SlSPX2 exhibited varying degrees of interaction with the PHR homologs in this study. Virus-induced gene silencing-based (VIGS) transcript inhibition of these genes alone or together promoted the accumulation of higher total soluble Pi in tomato seedlings and improved their growth. It also enhanced AM fungi colonization in the roots of SlSPX1 and SlSPX2 silenced seedlings. Overall, the present study provides evidence in support of SlSPX members being good candidates for improving AM fungi colonization potential in tomato.


Assuntos
Micorrizas , Solanum lycopersicum , Plântula/genética , Plântula/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Fosfatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
Plant Cell Environ ; 46(2): 518-548, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377315

RESUMO

In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.


Assuntos
Lactoilglutationa Liase , Solanum lycopersicum , Solanum lycopersicum/genética , Pressão Osmótica , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Cloreto de Sódio/farmacologia , Glutationa/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aldeído Pirúvico/metabolismo
5.
Plant Cell Rep ; 41(5): 1329-1332, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220470

RESUMO

KEY MESSAGE: We highlight the newly emerged roles of plant SPX-PHR proteins beyond phosphate starvation responses in controlling arbuscular mycorrhizal colonization success in roots.


Assuntos
Micorrizas , Simbiose , Regulação da Expressão Gênica de Plantas , Micorrizas/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Simbiose/fisiologia
6.
Molecules ; 26(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375266

RESUMO

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.


Assuntos
Vetiveria/metabolismo , Resíduos Industriais/análise , Nitrocompostos/metabolismo , Triazóis/metabolismo , Águas Residuárias/química , Biodegradação Ambiental , Metabolômica , Nitratos/metabolismo , Exsudatos de Plantas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Sci Pollut Res Int ; 26(14): 14414-14425, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868460

RESUMO

Production of acid mine drainage (AMD) and acid sulfate soils is one of the most concerning environmental consequences associated with mining activities. Implementation of appropriate post-mining AMD management practices is very important to minimize environmental impacts such as high soil acidity, soil erosion, and metal leachability. The objective of this study was to develop a cost-effective and environment-friendly "green" technology for the treatment of AMD-impacted soils. This study utilized the metal-binding and acid-neutralizing capacity of an industrial by-product, namely drinking water treatment residuals (WTRs), and the extensive root system of a metal hyper-accumulating, fast-growing, non-invasive, high-biomass perennial grass, vetiver (Chrysopogon zizanioides L.) to prevent soil erosion. Aluminum (Al)-based and calcium (Ca)-based WTRs were used to treat AMD-impacted soil collected from the Tab-Simco coal mine in Carbondale, IL. Tab-Simco is an abandoned coal mine, with very acidic soil containing a number of metals and metalloids such as Fe, Ni, Zn, Pb, and As at high concentrations. A 4-month-long greenhouse column study was performed using 5% and 10% w/w WTR application rates. Vetiver grass was grown on the soil-WTR mixed media. Turbidity and total suspended solid (TSS) analysis of leachates showed that soil erosion decreased in the soil-WTR-vetiver treatments. Difference in pH of leachate samples collected from control (3.06) and treatment (6.71) columns at day 120 indicated acidity removal potential of this technology. A scaled-up simulated field study was performed using 5% WTR application rate and vetiver. Soil pH increased from 2.69 to 7.2, and soil erosion indicators such as turbidity (99%) and TSS (95%) in leachates were significantly reduced. Results from the study showed that this "green" reclamation technique has the potential to effectively treat AMD-impacted soils.


Assuntos
Recuperação e Remediação Ambiental/métodos , Mineração , Poluentes do Solo/análise , Ácidos , Biodegradação Ambiental , Biomassa , Vetiveria/metabolismo , Metais/análise , Metais/metabolismo , Solo , Poluentes do Solo/metabolismo , Sulfatos/análise
8.
Environ Manage ; 63(1): 148-158, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276442

RESUMO

One of the biggest environmental impacts of mining is the generation of acid mine drainage (AMD). In the absence of proper post-mining management practices, AMD pollution can cause massive environmental damage. Current AMD management practices often fail to meet the expectations of cost, efficiency, and sustainability. The objective of this study was to utilize the metal-binding and acid-neutralizing capacity of an industrial by-product that is otherwise landfilled, namely drinking-water treatment residuals (WTRs), to treat AMD-water, thus offering a green remediation alternative. AMD-water was collected from Tab-Simco coal mine in Carbondale, Illinois. It was highly acidic (pH 2.27), and contaminated with metals, metalloids and sulfate at very high concentrations. A filter media, prepared using locally-generated aluminum (Al) and calcium (Ca)-based WTRs, was used to increase pH and to remove metals and [Formula: see text] from AMD-water. Laboratory-batch sorption studies at various WTRs (Al and Ca):AMD-water ratios were performed to optimize the filter media. WTRs:sand ratio of 1:6 provided optimal permeability, and 1:1 Al-WTRs:Ca-WTRs ratio was the optimal sorbent mix for removal of the metals of concern. A scaled-up study using a 55-gallon WTRs and sand-based filter was designed and tested. The results showed that the filter media removed more than 99% of the initial Fe (137 mg/L), Al (80 mg/L), Zn (11 mg/L), Pb (7 mg/L), As (4 mg/L), Mn (33 mg/L), and 44% of the initial [Formula: see text] (2481 mg/L) from Tab-Simco AMD-water. pH increased from 2.27 to 7.8. Desorption experiments showed that the metals were irreversibly bound to the WTRs and were not released back to the water.


Assuntos
Poluentes Químicos da Água , Água , Concentração de Íons de Hidrogênio , Illinois , Metais , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA