Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9794, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278369

RESUMO

Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes , Tomografia de Coerência Óptica , Algoritmos , Biofilmes/crescimento & desenvolvimento , Modelos Teóricos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31192163

RESUMO

Antimicrobial peptides, also known as host defense peptides, have recently emerged as a promising new category of therapeutic agents for the treatment of infectious diseases. This study evaluated the preclinical in vitro, ex vivo, and in vivo antimicrobial activity, as well as the potential to cause skin irritation, of human kininogen-derived antimicrobial peptide DPK-060 in different formulations designed for topical delivery. We found that DPK-060 formulated in acetate buffer or poloxamer gel caused a marked reduction of bacterial counts of Staphylococcus aureus in vitro (minimum microbicidal concentration <5 µg/ml). We also found that DPK-060 in poloxamer gel significantly suppressed microbial survival in an ex vivo wound infection model using pig skin and in an in vivo mouse model of surgical site infection (≥99 or ≥94% reduction in bacterial counts was achieved with 1% DPK-060 at 4 h post-treatment, respectively). Encapsulation of DPK-060 in different types of lipid nanocapsules or cubosomes did not improve the bactericidal potential of the peptide under the applied test conditions. No reduction in cell viability was observed in response to administration of DPK-060 in any of the formulations tested. In conclusion, the present study confirms that DPK-060 has the potential to be an effective and safe drug candidate for the topical treatment of microbial infections; however, adsorption of the peptide to nanocarriers failed to show any additional benefits.


Assuntos
Administração Tópica , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Modelos Animais de Doenças , Feminino , Lipídeos/química , Camundongos , Testes de Sensibilidade Microbiana , Nanocápsulas , Poloxâmero/uso terapêutico , Proteínas Serina-Treonina Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Serina-Treonina Quinases/uso terapêutico , Testes de Irritação da Pele , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Suínos
3.
Nano Lett ; 19(7): 4327-4333, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31142116

RESUMO

Multidrug resistant bacterial infections threaten to become the number one cause of death by the year 2050. Development of antimicrobial dendritic polymers is considered promising as an alternative infection control strategy. For antimicrobial dendritic polymers to effectively kill bacteria residing in infectious biofilms, they have to penetrate and accumulate deep into biofilms. Biofilms are often recalcitrant to antimicrobial penetration and accumulation. Therefore, this work aims to determine the role of compact dendrons with different peripheral composition in their penetration into Pseudomonas aeruginosa biofilms. Red fluorescently labeled dendrons with pH-responsive NH3+ peripheral groups initially penetrated faster from a buffer suspension at pH 7.0 into the acidic environment of P. aeruginosa biofilms than dendrons with OH or COO- groups at their periphery. In addition, dendrons with NH3+ peripheral groups accumulated near the top of the biofilm due to electrostatic double-layer attraction with negatively charged biofilm components. However, accumulation of dendrons with OH and COO- peripheral groups was more evenly distributed across the depth of the biofilms than NH3+ composed dendrons and exceeded accumulation of NH3+ composed dendrons after 10 min of exposure. Unlike dendrons with NH3+ groups at their periphery, dendrons with OH or COO- peripheral groups, lacking strong electrostatic double-layer attraction with biofilm components, were largely washed-out during exposure to PBS without dendrons. Thus, penetration and accumulation of dendrons into biofilms is controlled by their peripheral composition through electrostatic double-layer interactions, which is an important finding for the further development of new antimicrobial or antimicrobial-carrying dendritic polymers.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Dendrímeros , Pseudomonas aeruginosa/fisiologia , Antibacterianos/química , Antibacterianos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Concentração de Íons de Hidrogênio
4.
Artigo em Inglês | MEDLINE | ID: mdl-30745390

RESUMO

Pseudomonas aeruginosa colonizes the sputum of most adult cystic fibrosis patients, forming difficult-to-eradicate biofilms in which bacteria are protected in their self-produced extracellular polymeric substance (EPS) matrices. EPS provide biofilms with viscoelastic properties, causing time-dependent relaxation after stress-induced deformation, according to multiple characteristic time constants. These time constants reflect different biofilm (matrix) components. Since the viscoelasticity of biofilms has been related to antimicrobial penetration but not yet bacterial killing, this study aims to relate killing of P. aeruginosa, in its biofilm mode of growth, by three antimicrobials to biofilm viscoelasticity. P. aeruginosa biofilms were grown for 18 h in a constant-depth film fermenter, with mucin-containing artificial sputum medium (ASM+), artificial sputum medium without mucin (ASM-), or Luria-Bertani (LB) broth; this yielded 100-µm-thick biofilms that differed in their amounts of matrix environmental DNA (eDNA) and polysaccharides. Low-load compression testing, followed by three-element Maxwell analyses, showed that the fastest relaxation component, associated with unbound water, was most important in LB-medium-grown biofilms. Slower components due to water with dissolved polysaccharides, insoluble polysaccharides, and eDNA were most important in the relaxation of ASM+-grown biofilms. ASM--grown biofilms showed intermediate stress relaxation. P. aeruginosa in LB-medium-grown biofilms was killed most by exposure to tobramycin, colistin, or an antimicrobial peptide, while ASM+ provided the most protective matrix, with less water and most insoluble polysaccharides and eDNA. In conclusion, stress relaxation of P. aeruginosa biofilms grown in different media revealed differences in matrix composition that, within the constraints of the antimicrobials and growth media applied, correlated with the matrix protection offered against different antimicrobials.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Meios de Cultura/química , Matriz Extracelular/química , Testes de Sensibilidade Microbiana , Mucinas , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Viscosidade
5.
J Control Release ; 293: 73-83, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30465823

RESUMO

Bacterial infections are mostly due to bacteria in their biofilm-mode of growth, while penetrability of antimicrobials into infectious biofilms and increasing antibiotic resistance hamper infection treatment. In-vitro, monolaurin lipid nanocapsules (ML-LNCs) carrying adsorbed antimicrobial peptides (AMPs) displayed synergistic efficacy against planktonic Staphylococcus aureus, but it has not been demonstrated, neither in-vitro nor in-vivo, that such ML-LNCs penetrate into infectious S. aureus biofilms and maintain synergy with AMPs. This study investigates the release mechanism of AMPs from ML-LNCs and possible antimicrobial synergy of ML-LNCs with the AMPs DPK-060 and LL-37 against S. aureus biofilms in-vitro and in a therapeutic, murine, infected wound-healing model. Zeta potentials demonstrated that AMP release from ML-LNCs was controlled by the AMP concentration in suspension. Both AMPs demonstrated no antimicrobial efficacy against four staphylococcal strains in a planktonic mode, while a checkerboard assay showed synergistic antimicrobial efficacy when ML-LNCs and DPK-060 were combined, but not for combinations of ML-LNCs and LL-37. Similar effects were seen for growth reduction of staphylococcal biofilms, with antimicrobial synergy persisting only for ML-LNCs at the highest level of DPK-060 or LL-37 adsorption. Healing of wounds infected with bioluminescent S. aureus Xen36, treated with ML-LNCs alone, was faster when treated with PBS, while AMPs alone did not yield faster wound-healing than PBS. Faster, synergistic wound-healing due to ML-LNCs with adsorbed DPK-060, was absent in-vivo. Summarizing, antimicrobial synergy of ML-LNCs with adsorbed antimicrobial peptides as seen in-vitro, is absent in in-vivo healing of infected wounds, likely because host AMPs adapted the synergistic role of the AMPs added. Thus, conclusions regarding synergistic antimicrobial efficacy, should not be drawn from planktonic data, while even in-vitro biofilm data bear little relevance for the in-vivo situation.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Lauratos/administração & dosagem , Monoglicerídeos/administração & dosagem , Nanocápsulas/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Adsorção , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Quimioterapia Combinada , Lauratos/química , Lipídeos/administração & dosagem , Lipídeos/química , Monoglicerídeos/química , Nanocápsulas/química , Staphylococcus aureus/fisiologia
6.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802194

RESUMO

The transmission of bacteria in biofilms from donor to receiver surfaces precedes the formation of biofilms in many applications. Biofilm transmission is different from bacterial adhesion, because it involves biofilm compression in between two surfaces, followed by a separation force leading to the detachment of the biofilm from the donor surface and subsequent adhesion to the receiver surface. Therewith, the transmission depends on a balance between donor and receiver surface properties and the cohesiveness of the biofilm itself. Here, we compare bacterial transmission from biofilms of an extracellular-polymeric-substance (EPS)-producing and a non-EPS-producing staphylococcal strain and a dual-species oral biofilm from smooth silicon (Si) donor surfaces to smooth and nanopillared Si receiver surfaces. Biofilms were fully covering the donor surface before transmission. However, after transmission, the biofilms only partly covered the donor and receiver surfaces regardless of nanopillaring, indicating bacterial transmission through adhesive failure at the interface between biofilms and donor surfaces as well as through cohesive failure in the biofilms. The numbers of bacteria per unit volume in EPS-producing staphylococcal biofilms before transmission were 2-fold smaller than in biofilms of the non-EPS-producing strain and of dual species. This difference increased after transmission in the biofilm left behind on the donor surfaces due to an increased bacterial density for the non-EPS-producing strain and a dual-species biofilm. This suggests that biofilms of the non-EPS-producing strain and dual species remained compressed after transmission, while biofilms of the EPS-producing strain were induced to produce more EPS during transmission and relaxed toward their initial state after transmission due to the viscoelasticity conferred to the biofilm by its EPS.IMPORTANCE Bacterial transmission from biofilm-covered surfaces to surfaces is mechanistically different from bacterial adhesion to surfaces and involves detachment from the donor and adhesion to the receiver surfaces under pressure. Bacterial transmission occurs, for instance, in food processing or packaging, in household situations, or between surfaces in hospitals. Patients admitted to a hospital room previously occupied by a patient with antibiotic-resistant pathogens are at elevated infection risk by the same pathogens through transmission. Nanopillared receiver surfaces did not collect less biofilm from a smooth donor than a smooth receiver, likely because the pressure applied during transmission negated the smaller contact area between bacteria and nanopillared surfaces, generally held responsible for reduced adhesion. Biofilm left behind on smooth donor surfaces of a non-extracellular-polymeric-substance (EPS)-producing strain and dual species had undergone different structural changes than an EPS-producing strain, which is important for their possible further treatment by antimicrobials or disinfectants.


Assuntos
Biofilmes , Staphylococcus/química , Fenômenos Biomecânicos , Elasticidade , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Staphylococcus/fisiologia , Propriedades de Superfície , Viscosidade
7.
Polymers (Basel) ; 9(4)2017 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-30970828

RESUMO

Biopolymer hydrogels are an attractive class of materials for wound dressings and other biomedical applications because of their ease of use and availability from biomass. Here, we present a hydrogel formation approach based on alginate and chitosan. Alginate is conventionally cross-linked using multivalent ions such as Ca2+ but in principle any polycationic species can be used such as polyelectrolytes. Exchanging the cross-linking Ca2+ ions partially with chitosan, which at pH 7 has available positive charges as well as good interactions with Ca2+, leads to an improved Young's modulus. This gel is non-toxic to mammalian cells and hence allows conveniently for stem cell encapsulation since it is based on two-component mixing and gel formation. Additionally, the chitosan is known to have a bactericidal effect which is retained when using it in the alginate⁻chitosan gel formation and the formed hydrogels displayed bactericidal effects against P. aeruginosa and S. aureus. The combination of anti-bacterial properties, inclusion of stem cells, and the hydrogel nature would provide an ideal environment for complex wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA