Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(50): 48159-48165, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144065

RESUMO

Active whispering gallery mode resonators made as spherical microspheres doped with quantum dots or rare earth ions achieve high quality factors and are excellent candidates for biosensors capable of detecting biomolecules at low concentrations. However, to produce quantum dot-doped microspheres, new low melting temperature glasses are sought, which require surface functionalization and antibody immobilization for biosensor development. Here, we demonstrate the successful functionalization of three low melting point glasses and microspheres made of them. The glasses were made from sodium borophosphate, sodium aluminophosphate, and tellurite, and then, they were functionalized using (3-glycidyloxypropyl)trimethoxysilane in ethanol- and toluene-based protocols. Proper silanization was confirmed by energy-dispersive X-ray spectroscopy and fluorescence microscopy of an amino-modified luminescent oligonucleotide probe. Fluorescence imaging showed successful silanization for all tested samples and no degradation for aluminophosphate and tellurite glasses. The strongest signal was registered for tellurite glass samples functionalized using the toluene-based silanization protocol. This conclusion implies that this functionalization method is the most efficient and is highly recommended for future antibody immobilization and biosensing application.

2.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295226

RESUMO

In this paper, we analyze the possibilities of the protection of tools for wood machining with PVD (Physical Vapor Deposition) hard coatings. The nanolayered TiN/AlTiN coating, nanocomposite TiAlSiN coatings, and single layer TiN coating were analyzed in order to use them for protection of tools for wood machining. Both nanostructured coatings were deposited in an industrial magnetron sputtering system on the cutting blades made of sintered carbide WC-Co, while TiN single layer coating was deposited by evaporation using thermionic arc. In the case of TiN/AlTiN nanolayer coatings the thickness of the individual TiN and AlTiN layer was in the 5-10 nm range, depending on the substrate vertical position. The microstructure and chemical composition of coatings were studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) method. Additionally, in the case of the TiN/AlTiN coating, which was characterized by the best durability characteristics, the transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) methods were applied. The coatings adhesion to the substrate was analyzed by scratch test method combined with optical microscopy. Nano-hardness and durability tests were performed with uncoated and coated blades using chipboard. The best results durability characteristics were observed for TiN/AlTiN nanolayered coating. Performance tests of knives protected with TiN and TiAlSiN hard coatings did not show significantly better results compared to uncoated ones.

3.
Materials (Basel) ; 14(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640300

RESUMO

Coating magnesium alloys with nitride surface layers is a prospective way of improving their intrinsically poor surface properties; in particular, their tribological and corrosion resistance. These layers are usually produced using PVD methods using magnetron sputtering or arc evaporation. Even though the thus-produced layers significantly increase the wear resistance of the alloys, their effects on corrosion resistance are unsatisfactory because of the poor tightness, characteristic of PVD-produced products. Tightness acquires crucial significance when the substrate is a highly-active magnesium alloy, hence our idea to tighten the layers by subjecting them to a post-deposition chemical-hydrothermal-type treatment. This paper presents the results of our experiments with a new hybrid surface engineering method, using a final tightening pressure hydrothermal gas treatment in overheated steam of the composite titanium nitride layers PVD, produced on AZ91D magnesium alloy. The proposed method resulted in an outstanding improvement of the performance properties, in particular resistance to corrosion and wear, yielding values that exceed those exhibited by commercially anodized alloys and austenitic stainless 316L steel. The developed hybrid method produces new, high-performance corrosion and wear resistant, lightweight magnesium base materials, suitable for heavy duty applications.

4.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849015

RESUMO

The use of laser 3D printers is very perspective in the fabrication of solid and porous implants made of various polymers, metals, and its alloys. The Selective Laser Melting (SLM) process, in which consolidated powders are fully melted on each layer, gives the possibility of fabrication personalized implants based on the Computer Aid Design (CAD) model. During SLM fabrication on a 3D printer, depending on the system applied, there is a possibility for setting the amount of energy density (J/mm³) transferred to the consolidated powders, thus controlling its porosity, contact angle and roughness. In this study, we have controlled energy density in a range 8⁻45 J/mm³ delivered to titanium powder by setting various levels of laser power (25⁻45 W), exposure time (20⁻80 µs) and distance between exposure points (20⁻60 µm). The growing energy density within studied range increased from 63 to 90% and decreased from 31 to 13 µm samples density and Ra parameter, respectively. The surface energy 55⁻466 mN/m was achieved with contact angles in range 72⁻128° and 53⁻105° for water and formamide, respectively. The human mesenchymal stem cells (hMSCs) adhesion after 4 h decreased with increasing energy density delivered during processing within each parameter group. The differences in cells proliferation were clearly seen after a 7-day incubation. We have observed that proliferation was decreasing with increasing density of energy delivered to the samples. This phenomenon was explained by chemical composition of oxide layers affecting surface energy and internal stresses. We have noticed that TiO2, which is the main oxide of raw titanium powder, disintegrated during selective laser melting process and oxygen was transferred into metallic titanium. The typical for 3D printed parts post-processing methods such as chemical polishing in hydrofluoric (HF) or hydrofluoric/nitric (HF/HNO3) acid solutions and thermal treatments were used to restore surface chemistry of raw powders and improve surface.


Assuntos
Titânio/química , Temperatura Alta , Humanos , Ácido Fluorídrico/química , Porosidade , Propriedades de Superfície
5.
Micron ; 72: 1-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710786

RESUMO

Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.


Assuntos
Microscopia de Força Atômica/métodos , Nanofibras/ultraestrutura , Nanotecnologia/métodos , Materiais Biocompatíveis , Estresse Mecânico , Alicerces Teciduais
6.
Biomed Mater Eng ; 24(3): 1609-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24840199

RESUMO

BACKGROUND: Calcium phosphate ceramics have been widely considered as scaffolds for bone tissue engineering. Selection of the best support for cultured cells, crucial for tissue engineered systems, is still required. OBJECTIVE: We examined three types of calcium phosphate compounds: α-tricalcium phosphate - the most soluble one, carbonate hydroxyapatite - chemically the most similar to the bone mineral and biphasic calcium phosphate - with the best in vivo biocompatibility in order to select the best support for osteoblastic cells for tissue engineered systems. METHODS: Human osteoblasts were tested in direct contact with both dense samples and 3D scaffolds in either static or dynamic culture. Cell viability, cell spreading, osteogenic cell capacity, and extracellular matrix production were examined. RESULTS: The obtained data indicate that biphasic calcium phosphate is the optimal cell-supporting material. In addition, dynamic culture improved cell distribution in the scaffolds, enhanced production of the extracellular matrix and promoted cells osteogenic capacity. CONCLUSIONS: Biphasic calcium phosphate should be recommended as the most suitable matrix for osteogenic cells expansion and differentiation in tissue engineered systems.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Osso e Ossos/citologia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Porosidade , Técnicas de Cultura de Tecidos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA