Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Mhealth ; 9: 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760786

RESUMO

Background: The Roadmap mobile health (mHealth) app was developed to provide health-related quality of life (HRQOL) support for family caregivers of patients with cancer. Methods: Eligibility included: family caregivers (age ≥18 years) who self-reported as the primary caregiver of their pediatric patient with cancer; patients (age ≥5 years) who were receiving cancer care at the University of Michigan. Feasibility was calculated as the percentage of caregivers who logged into ONC Roadmap and engaged with it at least twice weekly for at least 50% of the 120-day study duration. Feasibility and acceptability was also assessed through a Feasibility and Acceptability questionnaire and the Mobile App Rating Scale to specifically assess app-quality. Exploratory analyses were also conducted to assess HRQOL self- or parent proxy assessments and physiological data capture. Results: Between September 2020-September 2021, 100 participants (or 50 caregiver-patient dyads) consented and enrolled in the ONC Roadmap study for 120-days. Feasibility of the study was met, wherein the majority of caregivers (N=32; 65%) logged into ONC Roadmap and engaged with it at least twice weekly for at least 50% of the study duration (defined a priori in the Protocol). The Feasibility and Acceptability questionnaire responses indicated that the study was feasible and acceptable with the majority (>50%) reporting Agree or Strongly Agree with positive Net Favorability [(Agree + Strongly Agree) - (Disagree + Totally Disagree)] in each of the domains (e.g., Fitbit use, ONC Roadmap use, completing longitudinal assessments, engaging in similar future study, study expectations). Improvements were seen across the majority of the mental HRQOL domains across all groups; even though underpowered, there were significant improvements in caregiver-specific aspects of HRQOL and anxiety and in depression and fatigue for children (ages 8-17 years), and a trend toward improvement in depression for children ages 8-17 years and in fatigue for adult patients. Conclusions: This study supports that mHealth technology may be a promising platform to provide HRQOL support for caregivers of pediatric patients with cancer. Importantly, the findings suggest that the study protocol was feasible, and participants were favorable to participate in future studies of this intervention alongside routine cancer care delivery.

3.
JMIR Ment Health ; 9(2): e34645, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34992051

RESUMO

BACKGROUND: The COVID-19 pandemic triggered a seismic shift in education to web-based learning. With nearly 20 million students enrolled in colleges across the United States, the long-simmering mental health crisis in college students was likely further exacerbated by the pandemic. OBJECTIVE: This study leveraged mobile health (mHealth) technology and sought to (1) characterize self-reported outcomes of physical, mental, and social health by COVID-19 status; (2) assess physical activity through consumer-grade wearable sensors (Fitbit); and (3) identify risk factors associated with COVID-19 positivity in a population of college students prior to release of the vaccine. METHODS: After completing a baseline assessment (ie, at Time 0 [T0]) of demographics, mental, and social health constructs through the Roadmap 2.0 app, participants were instructed to use the app freely, wear the Fitbit, and complete subsequent assessments at T1, T2, and T3, followed by a COVID-19 assessment of history and timing of COVID-19 testing and diagnosis (T4: ~14 days after T3). Continuous measures were described using mean (SD) values, while categorical measures were summarized as n (%) values. Formal comparisons were made on the basis of COVID-19 status. The multivariate model was determined by entering all statistically significant variables (P<.05) in univariable associations at once and then removing one variable at a time through backward selection until the optimal model was obtained. RESULTS: During the fall 2020 semester, 1997 participants consented, enrolled, and met criteria for data analyses. There was a high prevalence of anxiety, as assessed by the State Trait Anxiety Index, with moderate and severe levels in 465 (24%) and 970 (49%) students, respectively. Approximately one-third of students reported having a mental health disorder (n=656, 33%). The average daily steps recorded in this student population was approximately 6500 (mean 6474, SD 3371). Neither reported mental health nor step count were significant based on COVID-19 status (P=.52). Our analyses revealed significant associations of COVID-19 positivity with the use of marijuana and alcohol (P=.02 and P=.046, respectively) and with lower belief in public health measures (P=.003). In addition, graduate students were less likely and those with ≥20 roommates were more likely to report a COVID-19 diagnosis (P=.009). CONCLUSIONS: Mental health problems were common in this student population. Several factors, including substance use, were associated with the risk of COVID-19. These data highlight important areas for further attention, such as prioritizing innovative strategies that address health and well-being, considering the potential long-term effects of COVID-19 on college students. TRIAL REGISTRATION: ClinicalTrials.gov NCT04766788; https://clinicaltrials.gov/ct2/show/NCT04766788. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/29561.

5.
JMIR Res Protoc ; 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34115607

RESUMO

BACKGROUND: The COVID-19 pandemic has impacted lives significantly and greatly affected an already vulnerable population, college students, in relation to mental health and public safety. Social distancing and isolation have brought about challenges to student's mental health. Mobile health apps and wearable sensors may help to monitor students at risk for COVID-19 and support their mental well-being. OBJECTIVE: Through the use of a wearable sensor and smartphone-based survey completion, this study aimed to monitor students at risk for COVID-19. METHODS: We conducted a prospective study of students, undergraduate and graduate, at a public university in the Midwest. Students were instructed to download the Fitbit, Social Rhythms, and Roadmap 2.0 apps onto their personal mobile devices (Android or iOS). Subjects consented to provide up to 10 saliva samples during the study period. Surveys were administered through the Roadmap 2.0 app at five timepoints - at baseline, 1-month later, 2-months later, 3-months later, and at study completion. The surveys gathered information regarding demographics, COVID-19 diagnoses and symptoms, and mental health resilience, with the aim of documenting the impact of COVID-19 on the college student population. RESULTS: This study enrolled 2,158 college students between September 2020 and January 2021. Subjects are currently being followed on-study for one academic year. Data collection and analysis are ongoing. CONCLUSIONS: This study examined student health and well-being during the COVID-19 pandemic. It also assessed the feasibility of wearable sensor use and survey completion in a college student population, which may inform the role of our mobile health tools on student health and well-being. Finally, using wearable sensor data, biospecimen collection, and self-reported COVID-19 diagnosis, our results may provide key data towards the development of a model for the early prediction and detection of COVID-19. CLINICALTRIAL: ClinicalTrials.gov NCT04766788.

6.
JMIR Res Protoc ; 10(5): e29562, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945497

RESUMO

BACKGROUND: Health care workers (HCWs) have been working on the front lines of the COVID-19 pandemic with high risks of viral exposure, infection, and transmission. Standard COVID-19 testing is insufficient to protect HCWs from these risks and prevent the spread of disease. Continuous monitoring of physiological data with wearable sensors, self-monitoring of symptoms, and asymptomatic COVID-19 testing may aid in the early detection of COVID-19 in HCWs and may help reduce further transmission among HCWs, patients, and families. OBJECTIVE: By using wearable sensors, smartphone-based symptom logging, and biospecimens, this project aims to assist HCWs in self-monitoring COVID-19. METHODS: We conducted a prospective, longitudinal study of HCWs at a single institution. The study duration was 1 year, wherein participants were instructed on the continuous use of two wearable sensors (Fitbit Charge 3 smartwatch and TempTraq temperature patches) for up to 30 days. Participants consented to provide biospecimens (ie, nasal swabs, saliva swabs, and blood) for up to 1 year from study entry. Using a smartphone app called Roadmap 2.0, participants entered a daily mood score, submitted daily COVID-19 symptoms, and completed demographic and health-related quality of life surveys at study entry and 30 days later. Semistructured qualitative interviews were also conducted at the end of the 30-day period, following completion of daily mood and symptoms reporting as well as continuous wearable sensor use. RESULTS: A total of 226 HCWs were enrolled between April 28 and December 7, 2020. The last participant completed the 30-day study procedures on January 16, 2021. Data collection will continue through January 2023, and data analyses are ongoing. CONCLUSIONS: Using wearable sensors, smartphone-based symptom logging and survey completion, and biospecimen collections, this study will potentially provide data on the prevalence of COVID-19 infection among HCWs at a single institution. The study will also assess the feasibility of leveraging wearable sensors and self-monitoring of symptoms in an HCW population. TRIAL REGISTRATION: ClinicalTrials.gov NCT04756869; https://clinicaltrials.gov/ct2/show/NCT04756869. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29562.

7.
Blood ; 137(12): 1591-1602, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33275650

RESUMO

Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term "pre-equilibrium digital enzyme-linked immunosorbent assay" (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub-picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment.


Assuntos
Citocinas/sangue , Doenças do Sistema Imunitário/sangue , Testes Imediatos , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Humanos
8.
JMIR Res Protoc ; 9(9): e19288, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32945777

RESUMO

BACKGROUND: Cancer patients who undergo allogeneic hematopoietic stem cell transplantation are among the most medically fragile patient populations with extreme demands for caregivers. Indeed, with earlier hospital discharges, the demands placed on caregivers continue to intensify. Moreover, an increased number of allogeneic hematopoietic stem cell transplantations are being performed worldwide, and this expensive procedure has significant economic consequences. Thus, the health and well-being of family caregivers have attracted widespread attention. Mobile health technology has been shown to deliver flexible, and time- and cost-sparing interventions to support family caregivers across the care trajectory. OBJECTIVE: This protocol aims to leverage technology to deliver a novel caregiver-facing mobile health intervention named Roadmap 2.0. We will evaluate the effectiveness of Roadmap 2.0 in family caregivers of patients undergoing hematopoietic stem cell transplantation. METHODS: The Roadmap 2.0 intervention will consist of a mobile randomized trial comparing a positive psychology intervention arm with a control arm in family caregiver-patient dyads. The primary outcome will be caregiver health-related quality of life, as assessed by the PROMIS Global Health scale at day 120 post-transplant. Secondary outcomes will include other PROMIS caregiver- and patient-reported outcomes, including companionship, self-efficacy for managing symptoms, self-efficacy for managing daily activities, positive affect and well-being, sleep disturbance, depression, and anxiety. Semistructured qualitative interviews will be conducted among participants at the completion of the study. We will also measure objective physiological markers (eg, sleep, activity, heart rate) through wearable wrist sensors and health care utilization data through electronic health records. RESULTS: We plan to enroll 166 family caregiver-patient dyads for the full data analysis. The study has received Institutional Review Board approval as well as Code Review and Information Assurance approval from our health information technology services. Owing to the COVID-19 pandemic, the study has been briefly put on hold. However, recruitment began in August 2020. We have converted all recruitment, enrollment, and onboarding processes to be conducted remotely through video telehealth. Consent will be obtained electronically through the Roadmap 2.0 app. CONCLUSIONS: This mobile randomized trial will determine if positive psychology-based activities delivered through mobile health technology can improve caregiver health-related quality of life over a 16-week study period. This study will provide additional data on the effects of wearable wrist sensors on caregiver and patient self-report outcomes. TRIAL REGISTRATION: ClinicalTrials.gov NCT04094844; https://www.clinicaltrials.gov/ct2/show/NCT04094844. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/19288.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA