Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058936

RESUMO

In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.

2.
Adv Mater ; 34(33): e2202359, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35737653

RESUMO

Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low-powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution-processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air-sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low-powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3973-3976, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018870

RESUMO

Low electrode-skin impedance can be achieved if the interface has an electrolytic medium that allows the movement of ions across the interface. Maintaining good physical contact of the sensor with the skin is imperative. We propose a novel hydrophilic conductive sponge interface that encapsulates both of these fundamental concepts into an effective physical realization. Our implementation uses a hydrophilic polyurethane prepolymer doped with conductive carbon nanofibers and cured to form a flexible sponge material that conforms to uneven surfaces, for instance, on parts of the scalp with hair. Our results show that our sponges are able to stay in a hydrated state with a low electrode-skin impedance of around 5kΩ for more than 20 hours. The novelty in our conductive sponges also lies in their versatility: the carbon nanofibers make the electrode effective even when the electrode dries up. The sensors remain conductive with a skin impedance on the order of 20kΩ when dry, which is substantially lower than typical impedance of dry electrodes, and are able to extract alpha wave EEG activity in both wet and dry conditions.


Assuntos
Eletroencefalografia , Condutividade Elétrica , Impedância Elétrica , Eletrodos , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA