Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(22)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34049871

RESUMO

For quantum-confined nanomaterials, size dispersion causes a static broadening of spectra that has been difficult to measure and invalidates all-optical methods for determining the maximum photovoltage that an excited state can generate. Using femtosecond two-dimensional (2D) spectroscopy to separate size dispersion broadening of absorption and emission spectra allows a test of single-molecule generalized Einstein relations between such spectra for colloidal PbS quantum dots. We show that 2D spectra and these relations determine the thermodynamic standard chemical potential difference between the lowest excited and ground electronic states, which gives the maximum photovoltage. Further, we find that the static line broadening from many slightly different quantum dot structures allows single-molecule generalized Einstein relations to determine the average single-molecule linewidth from Stokes' frequency shift between ensemble absorption and emission spectra.

2.
ACS Appl Mater Interfaces ; 13(10): 12191-12197, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33682411

RESUMO

We report the color conversion performance of amber and red emitting quantum dots (QDs) on InGaN solid-state lighting (SSL) light emitting diode (LED) packages. Spherical quantum well (SQW) architectures (CdS/CdSe1-xSx/CdS) were prepared using a library of thio- and selenourea synthesis reagents and high throughput synthesis robotics. CdS/CdSe1-xSx QDs with narrow luminescence bands were coated with thick CdS shells (thickness = 1.6-7.5 nm) to achieve photoluminescence quantum yields (PLQY) up to 88% at amber and red emission wavelengths (λmax = 600-642 nm, FWHM < 45 nm). The photoluminescence from SQWs encapsulated in silicone and deposited on LED packages was monitored under accelerated aging conditions (oven temperature = 85 °C, relative humidity = 5-85%, blue optical power density = 3-45 W/cm2) by monitoring the red photon output over several hundred hours of continuous operation. The growth of a ZnS shell on the SQW surface increases the stability under long-term operation but also reduces the PLQY, especially of SQWs with thick CdS shells. The results illustrate that the outer ZnS shell layer is key to optimizing the PLQY and the long-term stability of QDs during operation on SSL packages.

3.
Chem Sci ; 10(26): 6539-6552, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31367306

RESUMO

We report a method to control the composition and microstructure of CdSe1-x S x nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k E) spanning 1.3 × 10-5 s-1 to 2.0 × 10-1 s-1. Depending on the relative reactivity (k Se/k S), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe1-x S x alloys (k Se/k S = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed.

4.
ACS Chem Biol ; 9(5): 1153-9, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24564429

RESUMO

Nicotinic acetylcholine receptors are a diverse set of ion channels that are essential to everyday brain function. Contemporary research studies selective activation of individual subtypes of receptors, with the hope of increasing our understanding of behavioral responses and neurodegenerative diseases. Here, we aim to expand current binding models to help explain the specificity seen among three activators of α4ß2 receptors: sazetidine-A, cytisine, and NS9283. Through mutational analysis, we can interchange the activation profiles of the stoichiometry-selective compounds sazetidine-A and cytisine. In addition, mutations render NS9283--currently identified as a positive allosteric modulator--into an agonist. These results lead to two conclusions: (1) occupation at each primary face of an α subunit is needed to activate the channel and (2) the complementary face of the adjacent subunit dictates the binding ability of the agonist.


Assuntos
Alcaloides/farmacologia , Azetidinas/farmacologia , Agonistas Nicotínicos/farmacologia , Oxidiazóis/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Alcaloides/química , Sequência de Aminoácidos , Animais , Azetidinas/química , Azocinas/química , Azocinas/farmacologia , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Agonistas Nicotínicos/química , Oxidiazóis/química , Ligação Proteica , Piridinas/química , Quinolizinas/química , Quinolizinas/farmacologia , Ratos , Receptores Nicotínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA