Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Inorg Chem ; 63(24): 11406-11415, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38835144

RESUMO

Large and rapid lithium storage is hugely demanded for high-energy/power lithium-ion batteries; however, it is difficult to achieve these two indicators simultaneously. Sn-based materials with a (de)alloying mechanism show low working potential and high theoretical capacity, but the huge volume expansion and particle agglomeration of Sn restrict cyclic stability and rate capability. Herein, a soft-in-rigid concept was proposed and achieved by chemical scissoring where a soft Sn-S bond was chosen as chemical tailor to break the Ti-S bond to obtain a loose stacking structure of 1D chain-like Sn1.2Ti0.8S3. The in situ and ex situ (micro)structural characterizations demonstrate that the Sn-S bonds are reduced into Sn domains and such Sn disperses in the rigid Ti-S framework, thus relieving the volume expansion and particle agglomeration by chemical and physical shielding. Benefiting from the merits of large-capacity Sn with an alloying mechanism and high-rate TiS2 with an intercalation mechanism, the Sn1.2Ti0.8S3 anode offers a high specific capacity of 963.2 mA h g-1 at 0.1 A g-1 after 100 cycles and a reversible capacity of 250 mA h g-1 at 10 A g-1 after 3900 cycles. Such a strategy realized by chemical tailoring at the structural unit level would broaden the prospects for constructing joint high-capacity and high-rate LIB anodes.

2.
Chem Commun (Camb) ; 59(89): 13305-13308, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37859456

RESUMO

The high activity of the In2O3/In2S3 heterostructure can be activated into homogeneous In2OxS3-x nanodots, thereupon stabilizing the subsequent cycles. The In2O3/In2S3 can offer a high capacity of 1140 mA h g-1 at 0.1 A g-1 after 290 cycles, and even at 1 A g-1, it harvests a reversible capacity of 900 mA h g-1 after 600 cycles.

3.
Radiother Oncol ; 188: 109906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690668

RESUMO

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

4.
Cancer Res Commun ; 3(4): 725-737, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37377749

RESUMO

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.


Assuntos
Potenciação de Longa Duração , Doenças Neuroinflamatórias , Masculino , Camundongos , Feminino , Animais , Plasticidade Neuronal , Hipofracionamento da Dose de Radiação
5.
ACS Omega ; 8(24): 21842-21852, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360431

RESUMO

Rubidium-ion batteries (RIBs) have received a lot of attention in the quantum field because of their fast release and reversible advantages as alkali sources. However, the anode material of RIBs still follows graphite, whose layer spacing can greatly restrict the diffusion and storage capability of Rb-ions, posing a significant barrier to RIB development. Herein, using first-principles calculations, the potential performance of three kinds of in-plane porous graphene with pore sizes of 5.88 Å (HG588), 10.39 Å (HG1039), and 14.20 Å (HG1420) as anode materials for RIBs was explored. The results indicate that HG1039 appears to be an appropriate anode material for RIBs. HG1039 has excellent thermodynamic stability and a volume expansion of <25% during charge and discharge. The theoretical capacity of HG1039 is up to 1810 mA h g-1, which is ∼5 times higher than that of the existing graphite-based lithium-ion batteries. Importantly, not only HG1039 enables the diffusion of Rb-ions at the three-dimensional level but also the electrode-electrolyte interface formed by HG1039 and Rb-ß-Al2O3 facilitates the arrangement and transfer of Rb-ions. In addition, HG1039 is metallic, and its outstanding ionic conductivity (diffusion energy barrier of only 0.04 eV) and electronic conductivity indicates superior rate capability. These characteristics make HG1039 an appealing anode material for RIBs.

6.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607431

RESUMO

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Assuntos
Hipocampo , Exposição à Radiação , Feminino , Camundongos , Masculino , Animais , Sinapses , Potenciação de Longa Duração , Plasticidade Neuronal
7.
Neuro Oncol ; 25(5): 927-939, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36334265

RESUMO

BACKGROUND: Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. METHODS: Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. RESULTS: The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. CONCLUSIONS: Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.


Assuntos
Neoplasias Encefálicas , Humanos , Criança , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/etiologia , Dosagem Radioterapêutica , Radioterapia/efeitos adversos
8.
Can J Physiol Pharmacol ; 100(4): 324-333, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34670103

RESUMO

Functional and structural adaptation of common carotid artery could be one of the important causes of postflight orthostatic intolerance after microgravity exposure, the mechanisms of which remain unclear. Recent evidence indicates that long-term spaceflight increases carotid artery stiffness, which might present a high risk to astronaut health and postflight working ability. Studies have suggested that vascular calcification is a common pathological change in cardiovascular diseases that is mainly manifested as an increase in vascular stiffness. Therefore, this study investigated whether simulated microgravity induces calcification of common carotid artery and to elucidate the underlying mechanisms. Four-week-old hindlimb-unweighted (HU) rats were used to simulate the deconditioning effects of microgravity on cardiovascular system. We found that simulated microgravity induced vascular smooth muscle cell (VSMC) osteogenic differentiation and medial calcification, increased receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) and RANK expression, and enhanced NF-κB activation in rat common carotid artery. In vitro activation of the RANK pathway with exogenous RANKL, a RANK ligand, increased RANK and osteoprotegerin (OPG) expression in HU rats. Moreover, the expression of osteogenic markers and activation of NF-κB in HU rats were further enhanced by exogenous RANKL but suppressed by the RANK inhibitor osteoprotegerin fusion protein (OPG-Fc). These results indicated that the OPG/RANKL/RANK system modulates VSMC osteogenic differentiation and medial calcification of common carotid artery in simulated microgravity rats by regulating the NF-kB pathway.


Assuntos
Osteoprotegerina , Ausência de Peso , Animais , Artéria Carótida Primitiva/metabolismo , NF-kappa B/metabolismo , Osteogênese , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Ausência de Peso/efeitos adversos
9.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445726

RESUMO

A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.


Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Nêutrons/efeitos adversos , Animais , Comportamento Animal/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos , Plasticidade Neuronal/efeitos da radiação
10.
Opt Express ; 29(2): 2466-2477, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726441

RESUMO

Coherent population trapping (CPT) resonance signals have promise in a wide range of applications involving precision sensing. Generally, the CPT phenomenon occurs in a three-level Λ system with a bichromatic phase-coherent light fields. We theoretically and experimentally studied an Rb vapor-cell-based atomic system involving bichromatic CPT optical fields and an external microwave (MW) field simultaneously. In such a mixing scheme, the coherence of the ground states could be controlled either by the Rabi frequency of the microwave field or by the relative phase between the optical fields and the MW field. Moreover, we investigated the Rabi resonance in this mixing scheme. The Rabi frequency of the MW field can be measured SI (International System of Units)-traceably based on the Rabi resonance lineshape, and thus holds the potential to realize intensity stabilization of the optical field in this system. Simple theoretical models and numerical calculations are also presented to explain the experimental results. There is scope to use the proposed technique in future development of SI-traceable optical field strength standards.

11.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760117

RESUMO

The aim of the present study was to identify the differentially expressed microRNAs (miRs) in cervical carcinoma (CC) tissues and cells and to explore the function of miR­302c­3p and miR­520a­3p in the proliferation of CC cells. Potential dysregulated miRNAs in CC tissues and tumour­adjacent tissues were detected. Reverse transcription­quantitative PCR (RT­qPCR) was performed to determine the expression of miR­302c­3p, miR­520a­3p and CXCL8 in CC tissues and cell lines. The target genes of the miRNAs were predicted using miRTarBase and verified by luciferase reporter assays. RT­qPCR and western blotting were performed to measure the expression of C­X­C motif ligand (CXCL)8 after transfection. The effect on proliferation was verified by Cell Counting Kit assay and ethynyl­2­deoxyuridine staining. Flow cytometry was utilised to assess the effect on apoptosis. In the present study, miR­302c­3p and miR­520a­3p were markedly downregulated in CC cell lines compared to the normal cervical cell line H8. Functionally, overexpression of miR­302c­3p and/or miR­520a­3p inhibited proliferation and promoted the apoptosis of CC cell lines in vitro, while the knockdown of miR­302c­3p and/or miR­520a­3p had the opposite effect. Furthermore, miR­302c­3p and miR­520a­3p could both bind to CXCL8. Inhibition of CXCL8 in combination with miR­302c­3p and/or miR­520a­3p overexpression exerted proliferation­suppressive and apoptosis­stimulating effects on CC cells, whereas restoring CXCL8 attenuated the miR­302c­3p­ and miR­520a­3p­induced anti­proliferative and pro­apoptotic effects. miR­302c­3p and miR­520a­3p suppress the proliferation of CC cells by downregulating the expression of CXCL8, which may provide a novel target for the treatment of CC.


Assuntos
Carcinoma/genética , Interleucina-8/genética , MicroRNAs/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Antagomirs/farmacologia , Apoptose/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/patologia
12.
Alzheimers Res Ther ; 13(1): 57, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676561

RESUMO

BACKGROUND: Regenerative therapies to mitigate Alzheimer's disease (AD) neuropathology have shown very limited success. In the recent era, extracellular vesicles (EVs) derived from multipotent and pluripotent stem cells have shown considerable promise for the treatment of dementia and many neurodegenerative conditions. METHODS: Using the 5xFAD accelerated transgenic mouse model of AD, we now show the regenerative potential of human neural stem cell (hNSC)-derived EVs on the neurocognitive and neuropathologic hallmarks in the AD brain. Two- or 6-month-old 5xFAD mice received single or two intra-venous (retro-orbital vein, RO) injections of hNSC-derived EVs, respectively. RESULTS: RO treatment using hNSC-derived EVs restored fear extinction memory consolidation and reduced anxiety-related behaviors 4-6 weeks post-injection. EV treatment also significantly reduced dense core amyloid-beta plaque accumulation and microglial activation in both age groups. These results correlated with partial restoration of homeostatic levels of circulating pro-inflammatory cytokines in the AD mice. Importantly, EV treatment protected against synaptic loss in the AD brain that paralleled improved cognition. MiRNA analysis of the EV cargo revealed promising candidates targeting neuroinflammation and synaptic function. CONCLUSIONS: Collectively, these data demonstrate the neuroprotective effects of systemic administration of stem cell-derived EVs for remediation of behavioral and molecular AD neuropathologies.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Neurais , Doença de Alzheimer/terapia , Animais , Modelos Animais de Doenças , Extinção Psicológica , Medo , Humanos , Camundongos , Camundongos Transgênicos
13.
Pflugers Arch ; 472(11): 1619-1630, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940783

RESUMO

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.


Assuntos
Hipóxia Celular , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ratos , Ratos Sprague-Dawley
14.
World J Gastroenterol ; 26(22): 3034-3055, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587447

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease, a chronic intestinal inflammatory disorder that includes Crohn's disease (CD) and ulcerative colitis, is rising. Circular RNAs are considered valuable diagnostic biomarkers for CD. Current evidence supports the views that epithelial-mesenchymal transition (EMT) plays an important role in CD pathogenesis, and that hsa-miR-130a-3p can inhibit transforming growth factor-ß1 (TGF-ß1)-induced EMT. Our previous study revealed that hsa_circRNA_102610 was upregulated in CD patients. Moreover, we predicted an interaction between hsa_circRNA_102610 and hsa-miR-130a-3p. Thus, we hypothesized that hsa_circRNA_102610 may play roles in the proliferation and EMT of intestinal epithelial cells by sponging hsa-miR-130a-3p to participate in the pathogenesis of CD. AIM: To explore the mechanism of hsa_circRNA_102610 in the pathogenesis of CD. METHODS: The relative expression levels of hsa_circRNA_102610 and hsa-miR-130a-3p in patients were detected by quantitative reverse transcription-polymerase chain reaction. The proliferation of human intestinal epithelial cells (HIECs) and normal-derived colon mucosa cell line 460 (NCM460) cells was detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine staining and cell cycle assays following overexpression or downregulation of hsa_circRNA_102610. Cell proliferation assays were performed as described above in a rescue experiment with hsa-miR-130a-3p mimics. The interaction of hsa_circRNA_102610 and hsa-miR-130a-3p was verified by fluorescence in situ hybridization and dual luciferase reporter assays. The relative expression levels of CyclinD1, mothers against decapentaplegic homolog 4 (SMAD4), E-cadherin, N-cadherin and Vimentin were detected by western blotting following hsa_circRNA_102610 overexpression, TGF-ß1-induced EMT or hsa-miR-130a-3p mimic transfection (in rescue experiments). RESULTS: Upregulation of hsa_circRNA_102610 was determined to be positively correlated with elevated fecal calprotectin levels in CD (r = 0.359, P = 0.007) by Pearson correlation analysis. Hsa_circRNA_102610 promoted the proliferation of HIECs and NCM460 cells, while hsa-miR-130a-3p reversed the cell proliferation-promoting effects of hsa_circRNA_102610. Fluorescence in situ hybridization and dual luciferase reporter assays showed that hsa_circRNA_102610 directly bound hsa-miR-130a-3p in NCM460 and 293T cells. An inverse correlation between downregulation of hsa-miR-130a-3p and upregulation of hsa_circRNA_102610 in CD patients was observed (r = -0.290, P = 0.024) by Pearson correlation analysis. Moreover, overexpression of hsa_circRNA_102610 promoted SMAD4 and CyclinD1 protein expression validated by western-blotting. Furthermore, over-expression of hsa_circRNA_102610 promoted TGF-ß1 induced EMT in HIECs and NCM460 cells via targeting of hsa-miR-130a-3p, with increased expression of Vimentin and N-cadherin and decreased expression of E-cadherin. CONCLUSION: Hsa_circRNA_102610 upregulation in CD patients could promote the proliferation and EMT of intestinal epithelial cells via sponging of hsa-miR-130a-3p.


Assuntos
Doença de Crohn , MicroRNAs , Fator de Crescimento Transformador beta1 , Doença de Crohn/genética , Transição Epitelial-Mesenquimal , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , RNA Circular , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
15.
Stem Cells Transl Med ; 9(1): 93-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568685

RESUMO

Cranial radiotherapy, although beneficial for the treatment of brain tumors, inevitably leads to normal tissue damage that can induce unintended neurocognitive complications that are progressive and debilitating. Ionizing radiation exposure has also been shown to compromise the structural integrity of mature neurons throughout the brain, an effect believed to be at least in part responsible for the deterioration of cognitive health. Past work has shown that cranially transplanted human neural stem cells (hNSCs) or their extracellular vesicles (EVs) afforded long-term beneficial effects on many of these cognitive decrements. To provide additional insight into the potential neuroprotective mechanisms of cell-based regenerative strategies, we have analyzed hippocampal neurons for changes in structural integrity and synaptic remodeling after unilateral and bilateral transplantation of hNSCs or EVs derived from those same cells. Interestingly, hNSCs and EVs similarly afforded protection to host neurons, ameliorating the impact of irradiation on dendritic complexity and spine density for neurons present in both the ipsilateral and contralateral hippocampi 1 month following irradiation and transplantation. These morphometric improvements were accompanied by increased levels of glial cell-derived growth factor and significant attenuation of radiation-induced increases in postsynaptic density protein 95 and activated microglia were found ipsi- and contra-lateral to the transplantation sites of the irradiated hippocampus treated with hNSCs or hNSC-derived EVs. These findings document potent far-reaching neuroprotective effects mediated by grafted stem cells or EVs adjacent and distal to the site of transplantation and support their potential as therapeutic agents to counteract the adverse effects of cranial irradiation.


Assuntos
Irradiação Craniana/efeitos adversos , Vesículas Extracelulares/transplante , Células-Tronco Neurais/transplante , Animais , Irradiação Craniana/métodos , Humanos , Masculino , Ratos , Ratos Nus
16.
Can J Physiol Pharmacol ; 97(10): 980-988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31136722

RESUMO

The degree and duration of chemical hypoxia induced by sodium dithionite (Na2S2O4) have not been reported. It is not yet clear how much reduction in the O2 concentration (physical hypoxia) can lead to hypoxia in cultured cardiomyocytes. In this study, oxygen microelectrodes were used to measure changes in the O2 concentration in media containing different concentrations of Na2S2O4. Then, hypoxic effects of 0.8, 1.0, and 2.0 mM Na2S2O4 or 1%, 3%, and 5% O2 in cultured cardiomyocytes from neonatal rats were observed and compared. The results showed that the O2 concentration failed to remain constant by Na2S2O4 treatment during the 180-minute observation period. Only the 2.0 mM Na2S2O4 group significantly increased the expression of hypoxia-inducible factor 1α (HIF-1α) and hypoxic responses. Notably, 3% O2 only significantly increased the expression of HIF-1α in cardiomyocytes, while 1% O2 not only increased the expression of HIF-1α but also increased the apoptotic rate in cardiomyocytes. These results suggest that Na2S2O4 is not suitable for establishing a hypoxic model in cultured neonatal rat cardiomyocytes, and neonatal rat cardiomyocytes cultured at or below 1% O2 induced significant hypoxic effects, which can be used as a starting O2 concentration for establishing a hypoxic cell model.


Assuntos
Meios de Cultura/metabolismo , Ditionita/farmacologia , Miócitos Cardíacos/fisiologia , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Cultura Primária de Células/métodos , Ratos
17.
Chin J Nat Med ; 16(6): 471-480, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30047469

RESUMO

The therapeutic application of deoxypodophyllotoxin (DPT) is limited due to its poor water solubility and stability. In the present study, the micelles assembled by the amphiphilic block copolymers (mPEG-PDLLA) were constructed to improve the solubility and safety of DPT for their in vitro and in vivo application. The central composite design was utilized to develop the optimal formulation composed of 1221.41 mg mPEG-PDLLA, the weight ratio of 1 : 4 (mPEG-PDLLA : DPT), 30 mL hydration volume and the hydration temperature at 40 °C. The results showed that the micelles exhibited uniformly spherical shape with the diameter of 20 nm. The drug-loading and entrapment efficiency of deoxypodophyllotoxin-polymeric micelles (DPT-PM) were about (20 ± 2.84)% and (98 ± 0.79)%, respectively, indicating that the mathematical models predicted well for the results. Compared to the free DPT, the cytotoxicity showed that blank micelles possessed great safety for Hela cells. In addition, the DPT loaded micelle formulation achieved stronger cytotoxicity at the concentration of 1 × 10-7 mol·L-1, which showed significant difference from free DPT (P < 0.05). In conclusion, the micelles were highly promising nano-carriers for the anti-tumor therapy with DPT.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Micelas , Podofilotoxina/análogos & derivados , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas , Células HeLa , Humanos , Tamanho da Partícula , Podofilotoxina/química , Podofilotoxina/toxicidade , Solubilidade , Propriedades de Superfície
18.
Sci Total Environ ; 625: 1283-1289, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996425

RESUMO

Grasslands play a crucial role in the coupled biogeochemical cycles of carbon (C) and silicon (Si) because they have a large biogenic Si pool (i.e. phytoliths). In recent decades, desertification has occurred extensively in sandy grasslands due to human activities and to increased aridity as a consequence of climate change. The present study determined the contents of phytoliths and C occlusion within phytoliths (PhytOC) in sandy grassland with different vegetation coverage from eastern Inner Mongolia, China and preliminarily assessed the effects of desertification on phytoliths and PhytOC production. Our results showed that the phytolith and PhytOC contents among different plant species varied from 0.68 to 9.23% and 0.03 to 1.13‰, respectively. However, the community-weighted means of the phytolith and PhytOC contents for the total aboveground vegetation were only 1.13-3.61% and 0.09-0.35‰, respectively, and their respective production fluxes ranged from 8.94 to 47.8 kg ha-1 year-1 and from 0.06 to 0.48 kg ha-1 year-1, respectively. As desertification progressed, the total contents of phytoliths and PhytOC in aboveground vegetation did not change significantly, whereas the production fluxes of phytoliths and PhytOC were markedly reduced. This study indicates that grassland desertification decreases the range of the total contents of phytolith and PhytOC by reducing species richness, and decreases the production fluxes of phytoliths and PhytOC by reducing aboveground biomass. Grassland restoration can theoretically enhance the production fluxes of phytoliths and PhytOC ~ five-fold.

19.
J Cell Biochem ; 119(10): 8022-8034, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29377254

RESUMO

The mechanism of transition from chronic pressure overload-induced cardiac hypertrophy to heart failure is still unclear. Angiotensin II (Ang II) may be an important factor that mediates the transition in the end-stage of cardiac hypertrophy. In the present study, Goldblatt two-kidney one-clip (2K1C) rat model was used to simulate Ang II-induced hypertension. The elevated Ang II not only induced the concentric hypertrophy of left ventricle and cardiac fibrosis, but also increased the expression and glycosylation of CD147 in 2K1C rats. The left ventricular structure and function detected by echocardiogram showed a sign of the transition from cardiac hypertrophy to heart failure in 16 weeks of 2K1C rats. Ang II can activate N-acetylglucosamine transferase V (GnT-V), a key enzyme for CD147 glycosylation. Retinoic acid, an agonist of GnT-V, further increased glycosylated CD147, and activated matrix metalloproteinase-2/-9 (MMP-2 and MMP-9) in the hypertrophied left ventricle of 2K1C rat. Meanwhile, collagen cross-linking in the hypertrophied left ventricle significantly reduced in 2K1C rats. On the contrary, tunicamycin, an inhibitor of N-glycan biosynthesis, inhibited glycosylation of CD147 and activity of MMP-2 and MMP-9, and then maintained a stable of collagen cross-linking in the 2K1C rat hearts. The above results suggested that Ang II increased glycosylated CD147 which activated MMP-2 and MMP-9. Collagens were degraded by the activated MMPs and then reduced collagen cross-linking. Finally, the hypertrophied left ventricle was progressively dilated in chronic pressure overload due to losing the limitation of collagen cross-linking. Therefore, the compensated hypertrophy of left ventricle gradually transited to congestive heart failure.


Assuntos
Angiotensina II/farmacologia , Basigina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Colágeno/metabolismo , Miocárdio/metabolismo , Animais , Ecocardiografia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Oncotarget ; 8(46): 80853-80868, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113349

RESUMO

EGFR amplification in cells having double minute chromosomes (DM) is commonly found in glioblastoma multiforme (GBM); however, how much it contributes to the current failure to treat GBM successfully is unknown. We studied two syngeneic primary cultures derived from a GBM with and without cells carrying DM, for their differential molecular and metabolic profiles, in vivo growth patterns, and responses to irradiation (IR). Each cell line has a distinct molecular profile consistent with an invasive "go" (with DM) or angiogenic "grow" phenotype (without DM) demonstrated in vitro and in intracranial xenograft models. Cells with DM were relatively radio-resistant and used higher glycolytic respiration and lower oxidative phosphorylation in comparison to cells without them. The DM-containing cell was able to restore tumor heterogeneity by mis-segregation of the DM-chromosomes, giving rise to cell subpopulations without them. As a response to IR, DM-containing cells switched their respiration from glycolic metabolism to oxidative phosphorylation and shifted molecular profiles towards that of cells without DM. Irradiated cells with DM showed the capacity to alter their extracellular microenvironment to not only promote invasiveness of the surrounding cells, regardless of DM status, but also to create a pro-angiogenic tumor microenvironment. IR of cells without DM was found primarily to increase extracellular MMP2 activity. Overall, our data suggest that the DM-containing cells of GBM are responsible for tumor recurrence due to their high invasiveness and radio-resistance and the mis-segregation of their DM chromosomes, to give rise to fast-growing cells lacking DM chromosomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA