Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Chem Biodivers ; : e202400832, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712949

RESUMO

Two new cytochalasans, marcytoglobosins A (1) and B (2) were isolated from the marine sponge associated fungus Chaetomium globosum 162105, along with six known compounds (3-8). The complete structures of two new compounds were determined based on 1D/2D NMR and HR-MS spectroscopic analyses coupled with ECD calculations. All eight isolates were evaluated for their antibacterial activity. Among them, compounds 3-8 displayed antibacterial effects against Staphylococcus epidermidis, Bacillus thuringiensis, Pseudomonas syringae pv. Actinidiae, Vibrio alginolyticus, and Edwardsiella piscicida with minimum inhibitory concentration (MIC) values ranging from 10 to 25 µg/mL.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1536-1547, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783814

RESUMO

The aim of this study was to prepare a mouse monoclonal antibody against the nonstructural protein 1 (NS1) of respiratory syncytial virus (RSV) to analyze its expression and distribution during transfection and infection. Additionally, we aimed to evaluate the antibody's application in immunoprecipitation assay. Firstly, the NS1 gene fragment was cloned into a prokaryotic plasmid and expressed in Escherichia coli. The resulting NS1 protein was then purified by affinity chromatography, and used to immunize the BALB/c mice. Subsequently, hybridoma cells capable of stably secreting the NS1 monoclonal antibody were selected using indirect enzyme linked immunosorbent assay (ELISA). This monoclonal antibody was employed in both indirect immunofluorescence assay (IFA) and Western blotting to analyze the expression and distribution of RSV NS1 in overexpressed and infected cells. Finally, the reliability of this monoclonal antibody was evaluated through the immunoprecipitation assay. The results showed that the RSV NS1 protein was successfully expressed and purified. Following immunization of mice with this protein, we obtained a highly specific RSV NS1 monoclonal antibody, which belonged to the IgG1 subtype with an antibody titer of 1:15 360 000. Using this monoclonal antibody, the RSV NS1 protein was identified in both transfected and infected cells. The IFA results revealed predominant distribution of NS1 in the cytoplasm and nucleus. Moreover, we confirmed that this monoclonal antibody could effectively bind specifically to NS1 protein in cell lysates, making it suitable as a capture antibody in immunoprecipitation assay. In conclusion, our study successfully achieved production of the RSV NS1 protein through a prokaryotic expression system and prepared a specific monoclonal antibody against NS1. This antibody demonstrates the ability to specifically identify the NS1 protein and can be used in the immunoprecipitation assay, thereby laying a foundation for the functional studies of the NS1 protein.


Assuntos
Anticorpos Monoclonais , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais , Animais , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Antivirais/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hibridomas/imunologia , Feminino
3.
Biomolecules ; 14(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785979

RESUMO

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Ubiquitinação , Inflamação/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
4.
Bioorg Chem ; 147: 107400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688196

RESUMO

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
5.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641178

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Modelos Animais de Doenças , Hipocampo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos , Canal de Cátion TRPC6 , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Canal de Cátion TRPC6/metabolismo , Comportamento Animal/efeitos dos fármacos , Maconha Medicinal/farmacologia , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
6.
World J Gastrointest Oncol ; 16(3): 577-582, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577447

RESUMO

We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor (ICI) and the occurrence of immune-related adverse events (irAEs). The predictive potential of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in determining ICI effectiveness has been extensively investigated, while limited research has been conducted on predicting irAEs. Furthermore, the combined model incorporating NLR and PLR, either with each other or in conjunction with additional markers such as carcinoembryonic antigen, exhibits superior predictive capabilities compared to individual markers alone. NLR and PLR are promising markers for clinical applications. Forthcoming models ought to incorporate established efficacious models and newly identified ones, thereby constituting a multifactor composite model. Furthermore, efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.

7.
Appl Microbiol Biotechnol ; 108(1): 283, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573435

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Pontos Quânticos , Animais , Suínos , Microesferas , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Corantes , Anticorpos Antivirais , Cromatografia de Afinidade
8.
Neurol Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676820

RESUMO

BACKGROUND: Wernicke's encephalopathy (WE) is an acute neurological syndrome resulting from thiamine (vitamin B1) deficiency. It has been recognized increasingly in non-alcoholic patients, such as in the condition of malnutrition. Recent literature has shed light on uncommon symptoms and neuroimaging findings. CASE REPORT: We reported a case of a 44-year-old male who initially presented with bilateral hearing loss, and exhibited abnormality in the splenium of the corpus callosum on magnetic resonance imaging (MRI) diffusion-weighted imaging sequence. On the following day the patient developed new symptoms, including unstable walking, double vision and hallucination. The subsequent brain MRI demonstrated lesions involving periaqueductal grey matter and bilateral medial thalamus, indicating the diagnosis of WE. Empirical treatment with intravenous thiamine resulted in complete clinical and radiological resolution. CONCLUSION: To the best of our knowledge, the current case is the first report of WE in literature with uncommon but reversible manifestations. This case warns us to maintain a heightened level of suspicion for WE in malnourished patients with neurological deficits, despite the possibility of atypical presentations encompassing bilateral hearing disturbances and unusual neuroradiological results. Early diagnosis and timely administration of thiamine in WE are likely to lead to a favorable outcome and full recovery.

9.
Clin Immunol ; 263: 110206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599263

RESUMO

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Camundongos Endogâmicos C57BL , Neutrófilos , Fagocitose , Receptores de IgG , Receptores de Fator de Crescimento Neural , Sepse , Animais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/etiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sepse/imunologia , Sepse/complicações , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Camundongos , Masculino , Fagocitose/imunologia , Receptores de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/imunologia , Camundongos Knockout , Lipopolissacarídeos , Citocinas/metabolismo , Citocinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Feminino , NF-kappa B/metabolismo , NF-kappa B/imunologia , Proteínas do Tecido Nervoso
10.
Food Chem ; 447: 138951, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489883

RESUMO

Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi­hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.


Assuntos
Antibacterianos , Polilisina , Polilisina/química , Ovalbumina , Eletricidade Estática , Simulação de Acoplamento Molecular
11.
Signal Transduct Target Ther ; 9(1): 69, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531869

RESUMO

The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.


Assuntos
Orthopoxvirus , Vacínia , Animais , Camundongos , Terapia Combinada de Anticorpos , Vacínia/prevenção & controle , Anticorpos Antivirais , Vaccinia virus/genética
12.
Sci Adv ; 10(13): eadk1200, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552012

RESUMO

Ferroptosis is a form of iron-dependent, lipid peroxidation-driven regulatory cell death that has been implicated in the pathogenesis of multiple diseases, including organ injury, ischemia/reperfusion, and neurodegenerative diseases. However, inhibitors that directly and specifically target ferroptosis are not yet available. Here, we identify the compound AS-252424 (AS) as a potent ferroptosis inhibitor through kinase inhibitor library screening. Our results show that AS effectively inhibits lipid peroxidation and ferroptosis in both human and mouse cells. Mechanistically, AS directly binds to the glutamine 464 of ACSL4 to inhibit its enzymatic activity, resulting in the suppression of lipid peroxidation and ferroptosis. By using nanoparticle-based delivery systems, treatment with AS-loaded nanoparticles effectively alleviate ferroptosis-mediated organ injury in mouse models, including kidney ischemia/reperfusion injury and acute liver injury (ALI). Thus, our results identify that AS is a specific and targeted inhibitor of ACSL4 with remarkable antiferroptosis function, providing a potential therapeutic for ferroptosis-related diseases.


Assuntos
Ferroptose , Humanos , Animais , Camundongos , Morte Celular , Modelos Animais de Doenças , Biblioteca Gênica , Isquemia
13.
Virol Sin ; 39(2): 228-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461965

RESUMO

Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 â€‹cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.


Assuntos
Culex , Mosquitos Vetores , RNA Viral , Replicação Viral , Animais , Culex/virologia , Mosquitos Vetores/virologia , RNA Viral/genética , Feminino , Linhagem Celular , Flavivirus/genética , Flavivirus/fisiologia , Flavivirus/isolamento & purificação , Cinética , Carga Viral , Genoma Viral , Glândulas Salivares/virologia
14.
Chem Sci ; 15(13): 5009-5018, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550688

RESUMO

Probing the sequence alterations, structures, interactions, and other important aspects of nucleic acids serves as the cornerstone of understanding nucleic acid-mediated biology and etiology, as well as the development of nucleic acid-based therapeutics. New strategies capable of accommodating these imperatives without necessitating specialized instrument or skills and potentially complementing existing methods are highly desired. Herein, we describe a rationally designed molecular rotor CCVJ-H ((9-(2-carboxy-2-cyanovinyl)julolidine-hydrazide)) and its superior performances compared to the universal base excision reporter probe CCVJ-1 in applications such as nucleic acid detection and DNA glycosylase assays. Furthermore, we showcase that the CCVJ-H probe accurately profiles the interactions between nucleic acids and small molecules, providing binding affinity and binding site information in a single reaction. We subsequently demonstrate the feasibility of applying the CCVJ-H system in high-throughput screening to identify nucleic acid-binding small molecules such as DNA CTG repeat expansion binders, potentially providing therapeutic interventions for myotonic dystrophy type 1. Finally, we profile the recognition difference between DNA/DNA and DNA/RNA against a library of small molecules, uncovering two drug-like molecules that preferentially bind DNA/RNA. We anticipate the versatile CCVJ-H probe will be a useful tool for both fundamental and translational nucleic acid research and application.

15.
Angew Chem Int Ed Engl ; 63(21): e202402178, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38480851

RESUMO

Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.


Assuntos
Oxirredução , RNA , Acilação , RNA/química , RNA/metabolismo , Humanos , Dissulfetos/química
16.
J Virol ; 98(4): e0014624, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440983

RESUMO

Peste des petits ruminants is an acute and highly contagious disease caused by the Peste des petits ruminants virus (PPRV). Host proteins play a crucial role in viral replication. However, the effect of fusion (F) protein-interacting partners on PPRV infection is poorly understood. In this study, we found that the expression of goat plasminogen activator urokinase (PLAU) gradually decreased in a time- and dose-dependent manner in PPRV-infected goat alveolar macrophages (GAMs). Goat PLAU was subsequently identified using co-immunoprecipitation and confocal microscopy as an F protein binding partner. The overexpression of goat PLAU inhibited PPRV growth and replication, whereas silencing goat PLAU promoted viral growth and replication. Additionally, we confirmed that goat PLAU interacted with a virus-induced signaling adapter (VISA) to antagonize F-mediated VISA degradation, increasing the production of type I interferon. We also found that goat PLAU reduced the inhibition of PPRV replication in VISA-knockdown GAMs. Our results show that the host protein PLAU inhibits the growth and replication of PPRV by VISA-triggering RIG-I-like receptors and provides insight into the host protein that antagonizes PPRV immunosuppression.IMPORTANCEThe role of host proteins that interact with Peste des petits ruminants virus (PPRV) fusion (F) protein in PPRV replication is poorly understood. This study confirmed that goat plasminogen activator urokinase (PLAU) interacts with the PPRV F protein. We further discovered that goat PLAU inhibited PPRV replication by enhancing virus-induced signaling adapter (VISA) expression and reducing the ability of the F protein to degrade VISA. These findings offer insights into host resistance to viral invasion and suggest new strategies and directions for developing PPR vaccines.


Assuntos
Doenças das Cabras , Cabras , Interações Hospedeiro-Patógeno , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Ativador de Plasminogênio Tipo Uroquinase , Proteínas Virais de Fusão , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína DEAD-box 58/metabolismo , Doenças das Cabras/imunologia , Doenças das Cabras/metabolismo , Doenças das Cabras/virologia , Cabras/imunologia , Cabras/virologia , Macrófagos Alveolares , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/metabolismo , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/crescimento & desenvolvimento , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/metabolismo , Ligação Proteica , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas Virais de Fusão/metabolismo
17.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
18.
J Am Chem Soc ; 146(11): 7658-7667, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452365

RESUMO

High-power phosphor-converted white light-emitting diodes (hp-WLEDs) have been widely involved in modern society as outdoor lighting sources. In these devices, due to the Joule effect, the high applied currents cause high operation temperatures (>500 K). Under these conditions, most phosphors lose their emission, an effect known as thermal quenching (TQ). Here, we introduce a zero-dimensional (0D) metal halide, Rb3InCl6:xSb3+, as a suitable anti-TQ phosphor offering robust anti-TQ behavior up to 500 K. We ascribe this behavior of the metal halide to two factors: (1) a compensation process via thermally activated energy transfer from structural defects to emissive centers and (2) an intrinsic structural rigidity of the isolated octahedra in the 0D structure. The anti-TQ phosphor-based WLEDs can stably work at a current of 2000 mA. The low synthesis cost and nontoxic composition reported here can herald a new generation of anti-TQ phosphors for hp-WLED.

19.
J Ethnopharmacol ; 326: 117967, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38431111

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), the dried fruit of Psoralea corylifolia L., is a commonly used traditional medicine that has contributed to the treatment of orthopedic diseases for thousands of years in China. However, recent PF-related liver injury reports have drawn widespread attention regarding its potential hepatotoxicity risks. AIM OF THE STUDY: This study was aimed to evaluate the long-term efficacy and chronic toxicity of PF using a 26-week administration experiment on rats in order to simulate the clinical usage situation. MATERIALS AND METHODS: The PF aqueous extract was consecutively administrated to rats daily at dosages of 0.7, 2.0, and 5.6 g/kg (equivalent to 1-8 times the clinical doses for humans) for as long as 26 weeks. Samples were collected after 13, 26, and 32 weeks (withdrawal for 6 weeks) since the first administration. The chronic toxicity of PF was evaluated by conventional toxicological methods, and the efficacy of PF was evaluated by osteogenic effects in the natural growth process. RESULTS: In our experiments, only the H group (5.6 g/kg) for 26-week PF treatment demonstrated liver or kidney injury, which the injuries were reversible after 6 weeks of withdrawal. Notably, the PF treatment beyond 13 weeks showed significant benefits for bone growth and development in rats, with a higher benefit-risk ratio in female rats. CONCLUSIONS: PF displayed a promising benefit-risk ratio in the treatment and prevention of osteoporosis, a disease that lacks effective medicine so far. This is the first study to elucidate the benefit-risk balance associated with clinical dosage and long-term use of PF, thereby providing valuable insights for rational clinical use and risk control of PF.


Assuntos
Medicamentos de Ervas Chinesas , Fabaceae , Psoralea , Humanos , Ratos , Feminino , Animais , Frutas , Razão de Chances , Fígado , Medicamentos de Ervas Chinesas/toxicidade
20.
J Interferon Cytokine Res ; 44(3): 124-134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488759

RESUMO

Feline interferon omega (IFN-ω) has been proven to have high antiviral activity; however, its in-depth antiviral effects remain unknown. Extracellular vesicles (EVs) have been demonstrated to participate in the regulation of the immune response pathway for the body through various active substances, especially through the microRNA (miRNA) carried by them. In this study, we isolated EVs from feline peripheral blood by differential centrifugation, and further found that the content of IFN-ω in EVs increased continuously within 24 h after IFN-ω treatment, and a large number of miRNAs were significantly downregulated in EVs within 12 h after IFN-ω treatment. These significantly differentially expressed miRNAs were important for regulating changes in antiviral cytokines. This study reveals for the first time the correlation between EVs-mediated miRNA in feline peripheral blood and IFN-ω on antiviral immune response, which may provide strong data support for the development of novel antiviral nanomedicine and the research of the antiviral effects of IFN-ω.


Assuntos
Vesículas Extracelulares , Interferon Tipo I , MicroRNAs , Gatos , Animais , MicroRNAs/genética , Citocinas , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA