Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 121950, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068780

RESUMO

This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Águas Residuárias/química , Biomassa , Biocombustíveis , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo
2.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800514

RESUMO

The construction industry is affected by the constant growth in the populations of urban areas. The demand for cement production has an increasing environmental impact, and there are urgent demands for alternative sustainable solutions. Volcanic ash (VA) is an abundant low-cost material that, because of its chemical composition and amorphous atomic structure, has been considered as a suitable material to replace Portland cement clinker for use as a binder in cement production. In the last decade, there has been interest in using alkali-activated VA material as an alternative material to replace ordinary Portland cement. In this way, a valuable product may be derived from a currently under-utilized material. Additionally, alkali-activated VA-based materials may be suitable for building applications because of their good densification behaviour, mechanical properties and low porosity. This article describes the most relevant findings from researchers around the world on the role of the chemical composition and mineral contents of VA on reactivity during the alkali-activation reaction; the effect of synthesis factors, which include the concentration of the alkaline activator, the solution-to-binder ratio and the curing conditions, on the properties of alkali-activated VA-based materials; and the mechanical performance and durability properties of these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA