RESUMO
The superconductivity in systems containing dispersionless (flat) bands is seemingly paradoxical, as traditional Bardeen-Cooper-Schrieffer theory requires an infinite enhancement of the carrier masses. However, the combination of flat and steep (dispersive) bands within the multiple band scenario might boost superconducting responses, potentially explaining high-temperature superconductivity in cuprates and metal hydrides. Here, we report on the magnetic penetration depths, the upper critical field, and the specific heat measurements, together with the first-principles calculations for the Mo5Si3-xPx superconducting family. The band structure features a flat band that gradually approaches the Fermi level as a function of phosphorus doping x, reaching the Fermi level at x ≃ 1.3. This leads to an abrupt change in nearly all superconducting quantities. The superfluid density data placed on the 'Uemura plot' results in two separated branches, thus indicating that the emergence of a flat band enhances correlations between conducting electrons.
RESUMO
We report the discovery and detailed investigation of superconductivity in Mo4Ga20As. Mo4Ga20As crystallizes in a space group ofI4/m(No. 87), with the lattice parametersa= 12.86352 Å andc= 5.30031 Å. The resistivity, magnetization, and specific heat data reveal Mo4Ga20As to be a type-II superconductor withTc= 5.6 K. The upper and lower critical fields are estimated to be 2.78 T and 22.0 mT, respectively. In addition, electron-phonon coupling in Mo4Ga20As is possibly stronger than the BCS weak-coupling limit. First-principles calculations suggest the Fermi level being dominated by the Mo-4dand Ga-4porbitals.
RESUMO
Arsenic doping in silicides has been much less studied compared with phosphorus. In this study, superconductivity is successfully induced by As doping in Mo5Si3. The superconducting transition temperature (Tc) reaches 7.7 K, which is higher than those in previously known W5Si3-type superconductors. Mo5Si2As is a type-II BCS superconductor with upper and lower critical fields of 6.65 T and 22.4 mT, respectively. In addition, As atoms are found to selectively take the 8h sites in Mo5Si2As. The emergence of superconductivity is possibly due to the shift of Fermi level as a consequence of As doping, as revealed by the specific heat measurements and first-principles calculations. Our work provides not only another example of As doping but also a practical strategy to achieve superconductivity in silicides through Fermi level engineering.
RESUMO
In this report, we studied the effects of isovalent Na-doping on the recently discovered quasi-one-dimensional Cr-based unconventional superconductor K2Cr3As3. A series of polycrystalline samples with nominal component (K1-x Na x )2Cr3As3 (x = 0-1) were synthesized by the solid state reaction method. From crystal structure and chemical phase characterizations, we found two distinct chemical phases with the same hexagonal structure but distinguished by different site occupancy of Na+ ions at the two kinds of K-site in the K2Cr3As3 lattice structure. When x ⩽ 0.4, the doped samples form a continuous sosoloid phase of (K1-x Na x )2Cr3As3 with the Na+ ions randomly doping at the K-sites (denoted as α-phase); when x ⩾ 0.5, a novel individual phase of (K0.25Na0.75)2Cr3As3 emerges, in which the Na+ ions selectively occupy all the '3k' sites and the K+ ions occupy the '1c' sites (denoted as ß-phase). No chemical phase of Na2Cr3As3 was detected. Superconductivity in these samples was studied by electrical transport and magnetic susceptibility measurements, and it evolves in a much sophisticated manner. In the α-phase, the superconducting T c decreases quickly upon Na-doping. All these α-phase samples have surprisingly low superconducting volume fraction and relatively low T c compared with the undoped K2Cr3As3. However, the ß-phase has a clearly enhanced T c up to 7.6 K which locates between the values of K2Cr3As3 and Na2Cr3As3, and exhibits a full superconducting shielding signal.
RESUMO
A quaternary compound Bi3O2S2Cl, which consists of novel [BiS2Cl]2- layers, is reported. It adopts a layered structure of the space group I4/ mmm (No. 139) with lattice parameters: a = 3.927(1) Å, c = 21.720(5) Å. In this compound, bismuth and chlorine atoms form an infinite planar layer, which is unique among the bismuth halides. Superconductivity is observed in both polycrystals and single crystals, and is significantly enhanced in the samples prepared with less sulfur or at higher temperatures. By tuning the content of sulfur, Bi3O2S2Cl can be converted from a semiconductor into a superconductor. The superconducting critical temperature ranges from 2.6 to 3.5 K. Our discovery of the [BiS2Cl]2- layer opens another door in searching for the bismuth compounds with novel physical properties.
RESUMO
Here we report the discovery of the first ternary molybdenum pnictide based superconductor K2Mo3As3. Polycrystalline samples were synthesized by the conventional solid state reaction method. X-ray diffraction analysis reveals a quasi-one-dimensional hexagonal crystal structure with (Mo3As3)2- linear chains separated by K+ ions, similar as previously reported K2Cr3As3, with the space group of P-6m2 (No. 187) and the refined lattice parameters aâ¯=â¯10.145(5)â¯Å and câ¯=â¯4.453(8)â¯Å. Electrical resistivity, magnetic susceptibility, and heat capacity measurements exhibit bulk superconductivity with the onset Tc at 10.4â¯K in K2Mo3As3 which is higher than the isostructural Cr-based superconductors. Being the same group VIB transition elements and with similar structural motifs, these Cr and Mo based superconductors may share some common underlying origins for the occurrence of superconductivity and need more investigations to uncover the electron pairing within a quasi-one-dimensional chain structure.
RESUMO
We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1-xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073K. Small single crystals were also grown from a flux method with the size about 100µm. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P21/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows distinct anomalies probably due to the Fe2+ related antiferromagnetic/structural phase transition near 110K and the Eu2+ related antiferromagnetic phase transition near 40K. La-doping suppressed both phase transitions to lower temperatures and induced superconducting transitions with a Tcâ¼11K for Eu0.85La0.15FeAs2.