Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171333, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423325

RESUMO

Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.


Assuntos
Microbiota , Zeolitas , Desnitrificação , Amônia , Áreas Alagadas , Nitrogênio , Nitrificação
3.
BMC Plant Biol ; 24(1): 113, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365619

RESUMO

BACKGROUND: The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS: In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS: In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.


Assuntos
Genes de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Pisum sativum/genética , Filogenia , Família Multigênica , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Hormônios , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
4.
BMC Genomics ; 25(1): 101, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262939

RESUMO

BACKGROUND: SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS: Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION: Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.


Assuntos
Arabidopsis , Beta vulgaris , Humanos , Resposta ao Choque Frio , Filogenia , Antioxidantes , Açúcares , Fatores de Transcrição
5.
Plant Biotechnol J ; 22(5): 1206-1223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38062934

RESUMO

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.


Assuntos
Fagopyrum , Rutina , Humanos , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Estudo de Associação Genômica Ampla , Hidrólise , Simulação de Acoplamento Molecular , Multiômica , Flavonoides/metabolismo , Hidrolases/metabolismo
6.
Front Plant Sci ; 14: 1163357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600205

RESUMO

The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.

7.
Front Plant Sci ; 14: 1171518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476176

RESUMO

The second-largest transcription factor superfamily in plants is that of the basic helix-loop-helix (bHLH) family, which plays an important complex physiological role in plant growth, tissue development, and environmental adaptation. Systematic research on the Chenopodium quinoa bHLH family will enable a better understanding of this species. Herein, authors used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 218 CqbHLH genes identified. A total of 218 CqbHLH transcription factor genes were identified in the whole genome, located on 18 chromosomes. A phylogenetic tree was constructed using the CqbHLH and AtbHLH proteins to determine their homology, and the members were divided into 20 subgroups and one unclustered gene. Authors also analyzed 218 CqbHLH genes, conservative motifs, chromosome diffusion, and gene replication. The author constructed one Neighbor-Joining (NJ) tree and a collinearity analysis map of the bHLH family in C. quinoa and six other plant species to study the evolutionary relationship and homology among multiple species. In addition, the expression levels of 20 CqbHLH members from different subgroups in various tissues, different fruit developmental stages, and six abiotic stresses were analyzed. Authors identified 218 CqbHLH genes and studied their biological functions, providing a basis for better understanding and further studying the bHLH family in quinoa.

8.
Front Microbiol ; 14: 1160551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206337

RESUMO

Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.

9.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613441

RESUMO

Essential trace elements are required at very low quantities in the human body but are essential for various physiological functions. Each trace element has a specific role and a lack of these elements can easily cause a threat to health and can be potentially fatal. In this study, inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used to determine the content of trace metal elements Ca, Fe, Cu, Mg, Zn, Se, Mo, Mn, and Cd in buckwheat flour. The content and distribution characteristics of trace metal elements were investigated using principal component and cluster analysis. The principal component analysis yielded a four-factor model that explained 73.64% of the test data; the cumulative contribution of the variance of the 1st and 2nd principal factors amounted to 44.41% and showed that Cu, Mg, Mo, and Cd are the characteristic elements of buckwheat flour. The cluster analysis divided the 28 buckwheat samples into two groups, to some extent, reflecting the genuineness of buckwheat flour. Buckwheat flour is rich in essential trace metal elements and can be used as a source of dietary nutrients for Mg and Mo.

10.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361858

RESUMO

ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.


Assuntos
Arabidopsis , Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Pressão Osmótica , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Filogenia
11.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293290

RESUMO

GATA is a transcription factor that exerts a vital function in plant growth and development, physiological metabolism, and environmental responses. However, the GATA gene family has rarely been studied in Tartary buckwheat since the completion of its genome. This study used bioinformatics methods to identify GATA genes of Tartary buckwheat and to analyze their subfamily classification, structural composition, and developmental evolution, as well as to discuss the expression patterns of FtGATA genes in different subfamilies. The twenty-eight identified FtGATA genes in the Tartary buckwheat genome were divided into four subfamilies and distributed on eight chromosomes. One pair of tandem repeat genes and eight pairs of fragments were found in chromosome mapping. Spatiotemporal expression patterns of eight FtGATA genes in different subfamilies indicated that the FtGATA gene family has regulatory roles in tissue specificity, fruit development, abiotic stress, and hormonal responses. This study creates a theoretical and scientific foundation for further research on the evolutionary relationship and biological function of FtGATA.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142630

RESUMO

We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.


Assuntos
Fagopyrum , Antioxidantes/metabolismo , Clorofila A/metabolismo , Fagopyrum/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Água/metabolismo
13.
BMC Genomics ; 23(1): 549, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918632

RESUMO

BACKGROUND: Transcription factors (TFs) play important roles in plants. Among the major TFs, GATA plays a crucial role in plant development, growth, and stress responses. However, there have been few studies on the GATA gene family in foxtail millet (Setaria italica). The release of the foxtail millet reference genome presents an opportunity for the genome-wide characterization of these GATA genes. RESULTS: In this study, we identified 28 GATA genes in foxtail millet distributed on seven chromosomes. According to the classification method of GATA members in Arabidopsis, SiGATA was divided into four subfamilies, namely subfamilies I, II, III, and IV. Structural analysis of the SiGATA genes showed that subfamily III had more introns than other subfamilies, and a large number of cis-acting elements were abundant in the promoter region of the SiGATA genes. Three tandem duplications and five segmental duplications were found among SiGATA genes. Tissue-specific results showed that the SiGATA genes were mainly expressed in foxtail millet leaves, followed by peels and seeds. Many genes were significantly induced under the eight abiotic stresses, such as SiGATA10, SiGATA16, SiGATA18, and SiGATA25, which deserve further attention. CONCLUSIONS: Collectively, these findings will be helpful for further in-depth studies of the biological function of SiGATA, and will provide a reference for the future molecular breeding of foxtail millet.


Assuntos
Arabidopsis , Setaria (Planta) , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico
14.
Microorganisms ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35888985

RESUMO

Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to antagonize soil-borne pathogens has received increasing interest from phytopathologists and ecologists. In this paper, the mechanisms of resistance to diseases induced by AMF and the application of AMF to plant fungal, bacterial, and nematode diseases have been summarized. This study aimed to enhance the potential use of AMF as a biological control method to prevent plant diseases in the future. Root morphological alteration characteristics were explained, including the influence of AMF on root structure, function, and the regulation of AMF via secondary metabolites. AMF can improve the rhizosphere environment by influencing the physical and chemical proprieties of soil, enhancing the growth of other beneficial microorganisms, and by competing with pathogenic microorganisms. Two microorganism types may compete for the same invasive sites in root systems and regulate nutrition distribution. AMF can induce the host plant to form defense systems, including improving phytohormone concentrations, inducing signal substrate production, gene expression regulation, and enhancing protein production.

15.
New Phytol ; 235(5): 1927-1943, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35701896

RESUMO

Golden buckwheat (Fagopyrum dibotrys or Fagopyrum cymosum) and Tartary buckwheat (Fagopyrum tataricum) belong to the Polygonaceae and the Fagopyrum genus is rich in flavonoids. Golden buckwheat is a wild relative of Tartary buckwheat, yet golden buckwheat is a traditional Chinese herbal medicine and Tartary buckwheat is a food crop. The genetic basis of adaptive divergence between these two buckwheats is poorly understood. Here, we assembled a high-quality chromosome-level genome of golden buckwheat and found a one-to-one syntenic relationship with the chromosomes of Tartary buckwheat. Two large inversions were identified that differentiate golden buckwheat and Tartary buckwheat. Metabolomic and genetic comparisons of golden buckwheat and Tartary buckwheat indicate an amplified copy number of FdCHI, FdF3H, FdDFR, and FdLAR gene families in golden buckwheat, and a parallel increase in medicinal flavonoid content. Resequencing of 34 wild golden buckwheat accessions across the two morphologically distinct ecotypes identified candidate genes, including FdMYB44 and FdCRF4, putatively involved in flavonoid accumulation and differentiation of plant architecture, respectively. Our comparative genomic study provides abundant genomic resources of genomic divergent variation to improve buckwheat with excellent nutritional and medicinal value.


Assuntos
Fagopyrum , Ecótipo , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo
16.
BMC Genomics ; 23(1): 389, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596144

RESUMO

BACKGROUND: Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited.  RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS: In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.


Assuntos
Setaria (Planta) , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
17.
Sci Rep ; 12(1): 4979, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322041

RESUMO

Foxtail millet (Setaria italica) is rich in nutrients and extremely beneficial to human health. We identified and comprehensively analyzed 89 MADS-box genes in the foxtail millet genome. According to the classification of MADS-box genes in Arabidopsis thaliana and rice, the SiMADS-box genes were divided into M-type (37) and MIKC-type (52). During evolution, the differentiation of MIKC-type MADS-box genes occurred before that of monocotyledons and dicotyledons. The SiMADS-box gene structure has undergone much differentiation, and the number of introns in the MIKC-type subfamily is much greater than that in the M-type subfamily. Analysis of gene duplication events revealed that MIKC-type MADS-box gene segmental duplication accounted for the vast majority of gene duplication events, and MIKC-type MADS-box genes played a major role in the amplification of SiMADS-box genes. Collinearity analysis showed highest collinearity between foxtail millet and maize MADS-box genes. Analysis of tissue-specific expression showed that SiMADS-box genes are highly expressed throughout the grain-filling process. Expression analysis of SiMADS-box genes under eight different abiotic stresses revealed many stress-tolerant genes, with induced expression of SiMADS33 and SiMADS78 under various stresses warranting further attention. Further, some SiMADS-box proteins may interact under external stress. This study provides insights for MADS-box gene mining and molecular breeding of foxtail millet in the future.


Assuntos
Setaria (Planta) , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
18.
BMC Plant Biol ; 21(1): 508, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732123

RESUMO

BACKGROUND: GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. RESULTS: In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. CONCLUSIONS: Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.


Assuntos
Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Setaria (Planta)/genética , Fatores de Transcrição/genética
19.
BMC Genomics ; 22(1): 778, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717536

RESUMO

BACKGROUND: Members of the basic helix-loop-helix (bHLH) transcription factor family perform indispensable functions in various biological processes, such as plant growth, seed maturation, and abiotic stress responses. However, the bHLH family in foxtail millet (Setaria italica), an important food and feed crop, has not been thoroughly studied. RESULTS: In this study, 187 bHLH genes of foxtail millet (SibHLHs) were identified and renamed according to the chromosomal distribution of the SibHLH genes. Based on the number of conserved domains and gene structure, the SibHLH genes were divided into 21 subfamilies and two orphan genes via phylogenetic tree analysis. According to the phylogenetic tree, the subfamilies 15 and 18 may have experienced stronger expansion in the process of evolution. Then, the motif compositions, gene structures, chromosomal spread, and gene duplication events were discussed in detail. A total of sixteen tandem repeat events and thirty-eight pairs of segment duplications were identified in bHLH family of foxtail millet. To further investigate the evolutionary relationship in the SibHLH family, we constructed the comparative syntenic maps of foxtail millet associated with representative monocotyledons and dicotyledons species. Finally, the gene expression response characteristics of 15 typical SibHLH genes in different tissues and fruit development stages, and eight different abiotic stresses were analysed. The results showed that there were significant differences in the transcription levels of some SibHLH members in different tissues and fruit development stages, and different abiotic stresses, implying that SibHLH members might have different physiological functions. CONCLUSIONS: In this study, we identified 187 SibHLH genes in foxtail millet and further analysed the evolution and expression patterns of the encoded proteins. The findings provide a comprehensive understanding of the bHLH family in foxtail millet, which will inform further studies on the functional characteristics of SibHLH genes.


Assuntos
Setaria (Planta) , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
20.
Plants (Basel) ; 10(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579317

RESUMO

Soil salinization is one of the main abiotic stress factors impacting the growth of crops and the agricultural industry today. Thus, we aimed to investigate the effects of H2O2 pretreatment on seed germination in Tartary buckwheat (Fagopyrum tataricum) seeds under salt stress and to evaluate this species' salt tolerance. Through the preliminary experiment, this study used 50 mmol L-1 NaCl solution to induce seed stress. After soaking for 12 h in different H2O2 concentrations, seeds were laid in Petri dishes with 50 mmol L-1 NaCl for seven days and the germination parameters and physiological indicators were measured to screen the optimal H2O2 pretreatment concentration and the salt tolerance index. Our results indicated that pretreatment with 5-10 mmol L-1 H2O2 was most effective in alleviating NaCl's impacts on the seeds' germination parameters. Furthermore, the growth and material accumulation of seedlings was promoted; catalase, superoxide dismutase activity, and proline content were enhanced; and malondialdehyde content was reduced. Principal component analysis and stepwise regression revealed six key indicators that had a significant impact on the salt tolerance characteristics of F. tataricum, namely, germination potential, shoot fresh weight, root surface area, root average diameter, catalase activity, and superoxide dismutase activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA