Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004638

RESUMO

Coal gangue is a solid waste formed during coal production, and the acid mine drainage it generates during open-pit storage severely pollutes the ecological environment of mining areas. Microorganisms play a crucial catalytic role in acidification, and their species and gene functions change during the oxidation process of coal gangue. In this study, the changes in microbial community structure were investigated during the initial acidification process for newly produced gangue exposed to moisture by monitoring the changes in pH, EC, sulfate ion concentration, and the iron oxidation rate of gangue leaching solutions. Moreover, the composition and functional abundance of microbial communities on the surface of the gangue were analyzed with rainfall simulation experiments and 16S rRNA sequencing. The study yielded the following findings: (1) The critical period for newly produced gangue oxidation spanned from 0~15 d after its exposure to water; the pH of leaching solutions decreased from 4.65 to 4.09 during this time, and the concentration and oxidation rate of iron in the leaching solutions remained at low levels, indicating that iron oxidation was not the main driver for acidification during this stage. (2) When the gangue was kept dry, Burkholderia spp. dominated the gangue microbial community. When the gangue was exposed to moisture, the rate of acidification accelerated, and Pseudomonas replaced Burkholderia as the dominant genus in the community. (3) In terms of gene function, the microbial community of the acidified gangue had stronger nitrogen cycling functions, and an increase in the abundance of microorganisms related to the sulfur cycle occurred after day 15 of the experiment. The microbial community in the acidified gangue had more stress resistance than the community of the newly formed gangue, but its potential to decompose environmental pollutants decreased.

2.
Microorganisms ; 11(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37763995

RESUMO

Coal gangue is a solid waste emitted during coal production. Coal gangue is deployed adjacent to mining land and has characteristics similar to those of the soils of these areas. Coal gangue-soil ecosystems provide habitats for a rich and active bacterial community. However, co-existence networks and the functionality of soil and coal gangue bacterial communities have not been studied. Here, we performed Illumina MiSeq high-throughput sequencing, symbiotic network and statistical analyses, and microbial phenotype prediction to study the microbial community in coal gangue and soil samples from Shanxi Province, China. In general, the structural difference between the bacterial communities in coal gangue and soil was large, indicating that interactions between soil and coal gangue are limited but not absent. The bacterial community exhibited a significant symbiosis network in soil and coal gangue. The co-occurrence network was primarily formed by Proteobacteria, Firmicutes, and Actinobacteria. In addition, BugBase microbiome phenotype predictions and PICRUSt bacterial functional potential predictions showed that transcription regulators represented the highest functional category of symbiotic bacteria in soil and coal gangue. Proteobacteria played an important role in various processes such as mobile element pathogenicity, oxidative stress tolerance, and biofilm formation. In general, this work provides a theoretical basis and data support for the in situ remediation of acidified coal gangue hills based on microbiological methods.

3.
Environ Sci Pollut Res Int ; 29(60): 90046-90057, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35864391

RESUMO

Acidic pollution from gangue oxidation has become a primary environmental problem in coal mining areas in China. The use of microorganisms to remediate acidic pollution in coal gangue piles has been indicated to be effective, but environmental differences and carbon sources in different mining areas have become important factors restricting microbial activity. Instead of the addition of new functional bacteria to gangue piles, carbon sources and nutrient salts were added to recently discharged gangue to enhance the activity of beneficial bacteria in the indigenous microbial community. The changes in pH and electrical conductivity (EC) of the gangue leachate as well as the composition and abundance of the functional microbial community on the surface of the gangue were analyzed by leaching simulation experiments and 16S rRNA sequencing. The results showed that the addition of a carbon source maintained the pH of the gangue leachate at 6.31~6.65 in 14 d, which was significantly higher than that of the control group, but the pH of the leachate decreased significantly after the addition of the carbon source was stopped. The most effective treatment is adding a low concentration of nutrient salt (20% concentration) and sodium lactate (0.02 g/L) to the gangue first, and then adding sodium lactate (0.1 mg/L) every 7 days. The addition of carbon sources and nutrient salts changed the microbial community composition on the surface of the gangue, and the species diversity index decreased. The dominant genera in the experimental group were Listeria, Arthrobacter, and Enterococcus. The functional gene types in the experimental and control groups were almost the same, but their relative abundance changed. The abundance of functional genes related to the sulfur cycle increased substantially in the experimental group, and the abundance of genes involved in the nitrogen and carbon cycles also increased, albeit to different degrees.


Assuntos
Carbono , Microbiota , Lactato de Sódio , RNA Ribossômico 16S , China
4.
Artigo em Inglês | MEDLINE | ID: mdl-32708726

RESUMO

Tetraena mongolica is a rare and endangered species unique to China. The total number and density of Tetraena mongolica shrubs in desertification areas have experienced a sharp decrease with increases in coal mining activities. However, available information on the T. mongolica rhizosphere soil quality and microbial properties is scarce. Here, we investigated the effect of coal mining on the soil bacterial community and its response to the soil environment in the T. mongolica region. The results showed that the closer to the coal mining area, the lower the vegetation coverage and species diversity. The electrical conductivity (EC) in the contaminated area increased, while the total nitrogen (TN), available phosphorus (AP), available potassium (AK), and soil organic carbon (SOC) decreased. The activity of ß-glucosidase, urease, alkaline phosphatase, and catalase further decreased. In addition, the mining area could alter the soil's bacterial abundance and diversity. The organic pollutant degradation bacteria such as Sphingomonas, Gemmatimonas, Nocardioides, and Gaiella were enriched in the soil, and the carbon-nitrogen cycle was changed. Canonical correspondence analysis (CCA) and Pearson's correlation coefficients showed that the change in the bacterial community structure was mainly caused by environmental factors such as water content (SWC) and EC. Taken together, these results suggested that open pit mining led to the salinization of the soil, reduction the soil nutrient content and enzyme activity, shifting the rhizosphere soil microbial community structure, and altering the carbon-nitrogen cycle, and the soil quality declined and the growth of T. mongolica was affected in the end. Therefore, the development of green coal mining technology is of great significance to protect the growth of T. mongolica.


Assuntos
Rizosfera , Solo , Carbono , China , Microbiologia do Solo
5.
Artigo em Inglês | MEDLINE | ID: mdl-31623103

RESUMO

Underground coal mining in western China causes heavy land subsidence and alters the soil ecology. However, the effects of land subsidence on soil fertility are not currently known, and the key factors governing its impact remain unclear in sandy land. We investigated the effects of land subsidence induced by underground mining on the soil quality in western China. Soil samples were collected at 0-15 cm and 15-30 cm from control and subsidence areas in three coal mines. The results showed that the soil water content (SWC), clay and silt percentage, total nitrogen (TN), dissolved organic carbon (DOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), available phosphorus (AP), and available potassium (AK) of the subsidence areas were significantly lower than those of the control areas. The saccharase, urease, and alkaline phosphatase activities in the subsidence areas decreased compared to those in the control areas, while the sand percentage of soil tended to increase. Soil nutrient contents, bacterial quantities, and activities of soil enzymes were positively correlated with SWC. Redundancy analysis (RDA) showed that the soil particle size distribution, SWC, and electrical conductivity (EC) were the major environmental factors driving changes in soil properties. These results indicated that land subsidence induced by coal mining caused losses in surface soil water and nutrients, and ultimately led to soil quality degradation. Therefore, the reclamation of mining subsidence land might be necessary, especially in arid and semi-arid areas.


Assuntos
Minas de Carvão , Microbiologia do Solo , Solo/química , China , Clima Desértico
6.
Acta Biochim Biophys Sin (Shanghai) ; 50(11): 1114-1120, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265275

RESUMO

Keloids are a fibroproliferative disorder of the skin resulted from abnormal healing of injured or irritated skin and are characterized by the ability to spread beyond the original boundary of the wound. Here, we tested the effect of gallic acid (GA), a plant polyphenol with selective growth inhibitory effects in cancer, on the proliferation and invasion of keloid fibroblasts (KFs) isolated from patients undergoing surgery. GA inhibited KF proliferation, migration, and invasion in parallel with the downregulation of matrix metalloproteinase-1 and -3 and upregulation of tissue inhibitors of metalloproteinase-1. Flow cytometric analysis showed that GA inhibited cell cycle progression and induced apoptosis. The effects of GA on KFs occurred in parallel with the inhibition of AKT and ERK1/2, suggesting that GA acts by suppressing the AKT/ERK signaling pathway. In ex vivo explant cultures of keloid tissues, GA inhibited the migration of KFs to the wound area and suppressed the expression of angiogenic markers concomitant with the inhibition of collagen deposition. These results identify GA as a potential therapeutic agent for the treatment of keloids and suggest a potential mechanism underlying its protective effect.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Ácido Gálico/farmacologia , Queloide/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Queloide/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA