Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(51): eadj9262, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117894

RESUMO

Flat optics consisting of nanostructures of high-refractive index materials produce lenses with thin form factors that tend to operate only at specific wavelengths. Recent attempts to achieve achromatic lenses uncover a trade-off between the numerical aperture (NA) and bandwidth, which limits performance. Here, we propose a new approach to design high-NA, broadband, and polarization-insensitive multilayer achromatic metalenses (MAMs). We combine topology optimization and full-wave simulations to inversely design MAMs and fabricate the structures in low-refractive index materials by two-photon polymerization lithography. MAMs measuring 20 µm in diameter operating in the visible range of 400 to 800 nm with 0.5 and 0.7 NA were achieved with efficiencies of up to 42%. We demonstrate broadband imaging performance of the fabricated MAM under white light and RGB narrowband illuminations. These results highlight the potential of the 3D-printed multilayer structures for realizing broadband and multifunctional meta-devices with inverse design.

2.
Chem Sci ; 14(39): 10953-10961, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829007

RESUMO

Plasmonic metal nanocrystals (e.g., Au, Ag, and Cu) hold great promise for driving photocatalytic reactions, but little is known about the plasmonic properties of Pd nanocrystals. Herein, we constructed a plasmonic Pd/Ru antenna-reactor photocatalyst through the controllable growth of a Ru nanoarray 'reactor' on a Pd nano-octahedron 'antenna' and demonstrated a plasmonic Pd-driven N2 photofixation process. The plasmonic properties of Pd nano-octahedrons were verified using finite-difference time-domain (FDTD) simulations and refractive index sensitivity tests in water-glycerol mixtures. Notably, the constructed plasmonic antenna-reactor nanostructures exhibited superior photocatalytic activities during N2 photofixation, with a maximum ammonia production rate of 117.5 ± 15.0 µmol g-1 h-1 under visible and near-infrared (NIR) light illumination. The mechanism can be attributed to the ability of the plasmonic Pd nanoantennas to harvest light to generate abundant hot electrons and the Ru nanoreactors to provide active sites for adsorption and activation of N2. This work paves the way for the development of Pd-based plasmonic photocatalysts for efficient N2 photofixation and sheds new light on the optimal design and construction of antenna-reactor nanostructures.

3.
Nano Lett ; 23(12): 5520-5527, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37290093

RESUMO

Structural colors in homogeneous elastomeric materials predominantly exhibit uniform color changes under applied strains. However, juxtaposing mechanochromic pixels that exhibit distinct responses to applied strain remains challenging, especially on the microscale where the demand for miscellaneous spectral information increases. Here, we present a method to engineer microscale switchable color pixels by creating localized inhomogeneous strain fields at the level of individual microlines. Trenches produced by transfer casting from 2.5D structures into elastomers exhibit a uniform structural color in the unstretched state due to interference and scattering effects, while they show different colors under an applied uniaxial strain. This programmable topographic change resulting in color variation arises from strain mismatch between layers and trench width. We utilized this effect to achieve the encryption of text strings with Morse code. The effective and facile design principle is promising for diverse optical devices based on dynamic structures and topographic changes.

4.
J R Soc Interface ; 20(202): 20230135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254701

RESUMO

Optical transparency is rare in terrestrial organisms, and often originates through loss of pigmentation and reduction in scattering. The coloured wings of some butterflies and moths have repeatedly evolved transparency, offering examples of how they function optically and biologically. Because pigments are primarily localized in the scales that cover a colourless wing membrane, transparency has often evolved through the complete loss of scales or radical modification of their shape. Whereas bristle-like scales have been well documented in glasswing butterflies, other scale modifications resulting in transparency remain understudied. The butterfly Phanus vitreus achieves transparency while retaining its scales and exhibiting blue/cyan transparent zones. Here, we investigate the mechanism of wing transparency in P. vitreus by light microscopy, focused ion beam milling, microspectrophotometry and optical modelling. We show that transparency is achieved via loss of pigments and vertical orientation in normal paddle-like scales. These alterations are combined with an anti-reflective nipple array on portions of the wing membrane being more exposed to light. The blueish coloration of the P. vitreus transparent regions is due to the properties of the wing membrane, and local scale nanostructures. We show that scale retention in the transparent patches might be explained by these perpendicular scales having hydrophobic properties.


Assuntos
Borboletas , Animais , Asas de Animais , Pigmentação , Microscopia Eletrônica de Varredura , Visão Ocular
5.
Chem Rev ; 123(11): 6891-6952, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37133878

RESUMO

All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.

6.
Phys Chem Chem Phys ; 25(18): 13189-13197, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129667

RESUMO

Heterogeneous metal nanostructures with excellent plasmonic performance and catalytic activity are urgently needed to realize efficient light-driven catalysis. Herein, we demonstrate the preparation of hollow Au nanobipyramid (NBP)@AgPd nanostructures by employing Au NBP@Ag nanorods as templates. The products could transform from Au NBP@AgPd nanoframes to nanocages, along with the redshift and broadening of the plasmon wavelength. Particularly, the plasmon intensity of these nanostructures remained considerable among the shape evolution process. Based on the selective absorption of CTAB, the Ag atoms on the side surfaces of the Au NBP@Ag nanorods were employed as the sacrificial templates to reduce Pd atoms through galvanic replacement. The reduced Pd and Ag atoms produced through the reduction reaction were preferably co-deposited on the corners and edges at the early stage and later deposited directly on the defect sites of the side facets, as more Ag atoms were released. The discontinued distribution of the Pd atoms gives an opportunity to etch away the Ag atoms in the cores, leading to the formation of hollow Au NBP@AgPd nanostructures after the etching process. It is worth noting that the deposition of the ultrathin AgPd nanoframe had little influence on the plasmonic properties of Au NBPs, as verified by electrodynamic simulations. The Au NBP@AgPd nanoframe showed great photocatalytic activity toward Suzuki coupling reactions under laser irradiation. Taken together, these results suggest that the hot electrons successfully transfer from Au NBP to the AgPd nanoframes to participate in the photocatalytic reactions. This study affords a promising route for the synthesis of anisotropic bimetallic nanostructures with excellent plasmonic performances.

7.
Nat Nanotechnol ; 18(3): 264-272, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36781996

RESUMO

The orbital angular momentum is a fundamental degree of freedom of light wavefronts, currently exploited in applications where information capacity is a key requirement, such as optical communication, super-resolution imaging and high-dimensional quantum computing. However, generating orbital angular momentum beams requires spatio-temporally coherent light sources (lasers or supercontinuum sources), because incoherent light would smear out the doughnut features of orbital angular momentum beams, forming polychromatic or obscured orbital angular momentum beams instead. Here we show generation of coloured orbital angular momentum beams using incoherent white light. Spatio-temporal coherence is achieved by miniaturizing spiral phase plates and integrating them with structural colour filters, three-dimensionally printed at the nanoscale. Our scheme can in principle generate multiple helical eigenstates and combine colour information into orbital angular momentum beams independently. These three-dimensional optical elements encoded with colour and orbital angular momentum information substantially increase the number of combinations for optical anti-counterfeiting and photonic lock-key devices in a pairwise fashion.

8.
Nano Lett ; 22(22): 8917-8924, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354246

RESUMO

Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.


Assuntos
Nanoestruturas , Materiais Inteligentes , Polímeros/química , Impressão , Nanoestruturas/química , Fótons
9.
Nano Lett ; 22(20): 8189-8195, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36227759

RESUMO

Under white light illumination, gratings produce an angular distribution of wavelengths dependent on the diffraction order and geometric parameters. However, previous studies of gratings are limited to at least one geometric parameter (height, periodicity, orientation, angle of incidence) kept constant. Here, we vary all geometric parameters in the gratings using a versatile nanofabrication technique, two-photon polymerization lithography, to encode hidden color information through two design approaches. The first approach hides color information by decoupling the effects of grating height and periodicity under normal and oblique incidence. The second approach hides multiple sets of color information by arranging gratings in sectors around semicircular pixels. Different images are revealed with negligible crosstalk under oblique incidence and varying sample rotation angles. Our analysis shows that an angular separation of ≥10° between adjacent sectors is required to suppress crosstalk. This work has potential applications in information storage and security watermarks.

10.
ACS Nano ; 16(5): 8244-8252, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35533374

RESUMO

It remains a challenge to directly print arbitrary three-dimensional shapes that exhibit structural colors at the micrometer scale. Woodpile photonic crystals (WPCs) fabricated via two-photon lithography (TPL) are elementary building blocks to produce 3D geometries that generate structural colors due to their ability to exhibit either omnidirectional or anisotropic photonic stop bands. However, existing approaches produce structural colors on WPCs when illuminating from the top, requiring print resolutions beyond the limit of commercial TPL, which necessitates postprocessing techniques. Here, we devised a strategy to support high-order photonic cavity modes upon side illumination on WPCs that surprisingly generate prominent reflectance peaks in the visible spectrum. Based on that, we demonstrate one-step printing of 3D photonic structural colors without requiring postprocessing or subwavelength features. Vivid colors with reflectance peaks exhibiting a full width at half-maximum of ∼25 nm, a maximum reflectance of 50%, a gamut of ∼85% of sRGB, and large viewing angles were achieved. In addition, we also demonstrated voxel-level manipulation and control of colors in arbitrary-shaped 3D objects constituted with WPCs as unit cells, which has potential for applications in dynamic color displays, colorimetric sensing, anti-counterfeiting, and light-matter interaction platforms.

11.
Sci Adv ; 8(8): eabm4512, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196088

RESUMO

While structural colors are ubiquitous in nature, saturated reds are mysteriously absent. This long-standing problem of achieving Schrödinger's red demands sharp transitions from "stopband" to a high-reflectance "passband" with total suppression of higher-order resonances at blue/green wavelengths. Current approaches based on nanoantennas are insufficient to satisfy all conditions simultaneously. Here, we designed Si nanoantennas to support two partially overlapping quasi-bound-states-in-the-continuum modes with a gradient descent algorithm to achieve sharp spectral edges at red wavelengths. Meanwhile, high-order modes at blue/green wavelengths are suppressed via engineering the substrate-induced diffraction channels and the absorption of amorphous Si. This design produces possibly the most saturated and brightest reds with ~80% reflectance, exceeding the red vertex in sRGB and even the cadmium red pigment. Its nature of being sensitive to polarization and illumination angle could be potentially used for information encryption, and this proposed paradigm could be generalized to other Schrödinger's color pixels.

12.
Nanoscale ; 14(3): 736-743, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34939638

RESUMO

Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.

13.
Adv Mater ; 34(6): e2108128, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34799881

RESUMO

Color changes can be achieved by straining photonic crystals or gratings embedded in stretchable materials. However, the multiple repeat units and the need for a volumetric assembly of nanostructures limit the density of information content. Inspired by surface reliefs on oracle bones and music records as a means of information archival, here, surface-relief elastomers are endowed with multiple sets of information that are accessible by mechanical straining along in-plane axes. Distinct from Bragg diffraction effects from periodic structures, trenches that generate color due to variations in trench depth, enabling individual trench segments to support a single color, are reported. Using 3D printed cuboids, trenches of varying geometric parameters are replicated in elastomers. These parameters determine the initial color (or lack thereof), the response to capillary forces, and the appearance when strained along or across the trenches. Strain induces modulation in trench depth or the opening and closure of a trench, resulting in surface reliefs with up to six distinct states, and an initially featureless surface that reveals two distinct images when stretched along different axes. The highly reversible structural colors are promising in optical data archival, anti-counterfeiting, and strain-sensing applications.

14.
Nano Lett ; 21(20): 8602-8608, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662137

RESUMO

Structural coloration is a recurring solution in biological systems to control visible light. In nature, basic structural coloration results from light interacting with a repetitive nanopattern, but more complex interactions and striking results are achieved by organisms incorporating additional hierarchical structures. Artificial reproduction of single-level structural color has been achieved using repetitive nanostructures, with flat sheets of inverse opals being very popular because of their simple and reliable fabrication process. Here, we control photonic structures at several length scales using a combination of direct laser writing and nanosphere assembly, producing freeform hierarchical constructions of inverse opals with high-intensity structural coloration. We report the first 3D prints of stacked, overhanging and slanted microstructures of inverse opals. Among other characteristics, these hierarchical photonic structures exhibit geometrically tunable colors, focal-plane-dependent patterns, and arbitrary alignment of microstructure facet with self-assembled lattice. Based on those results, novel concepts of multilevel information encoding systems are presented.


Assuntos
Nanoestruturas , Fótons , Luz , Óptica e Fotônica , Impressão Tridimensional
15.
Nat Commun ; 12(1): 3728, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140502

RESUMO

A light field print (LFP) displays three-dimensional (3D) information to the naked-eye observer under ambient white light illumination. Changing perspectives of a 3D image are seen by the observer from varying angles. However, LFPs appear pixelated due to limited resolution and misalignment between their lenses and colour pixels. A promising solution to create high-resolution LFPs is through the use of advanced nanofabrication techniques. Here, we use two-photon polymerization lithography as a one-step nanoscale 3D printer to directly fabricate LFPs out of transparent resin. This approach produces simultaneously high spatial resolution (29-45 µm) and high angular resolution (~1.6°) images with smooth motion parallax across 15 × 15 views. Notably, the smallest colour pixel consists of only a single nanopillar (~300 nm diameter). Our LFP signifies a step towards hyper-realistic 3D images that can be applied in print media and security tags for high-value goods.

16.
ACS Nano ; 15(6): 10185-10193, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34019388

RESUMO

Colorful three-dimensional (3D) prints are promising as practical anticounterfeiting labels with easily recognizable and striking visual effects. However, existing colorful 3D displays either require specific illumination conditions with multiple coherent lasers, hence suffer from speckles, or are unsuitable as passive labels. Here, we report a concept of a virtual 3D color object consisting of colorful focal spots in free space. The colors and corresponding "floating heights" of these spots are independently controlled via the design of 3D printed microlens profiles and heights of nanopillars that act as structural-color filters. Despite the unremarkable appearance of the printed substrate under both optical and electron microscopy, illumination with incoherent white light reveals information in the form of bright colorful spots appearing at designated heights above the plane of the substrate. The term "optical fireworks" refers to the way these spots appear and disappear under an optical microscope as one continuously shifts the focal plane. Our 3D printed optical fireworks security labels introduce applications for optical elements integrated with nanostructures in 3D colorful displays and anticounterfeiting labels.

17.
Nano Lett ; 21(11): 4721-4729, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34019769

RESUMO

Sculpting nanostructures into different geometries in either one or two dimensions produces a wide range of colorful elements in microscopic prints. However, achieving different shades of gray and control of color saturation remain challenging. Here, we report a complete approach to color and grayscale generation based on the tuning of a single nanostructure geometry. Through two-photon polymerization lithography, we systematically investigated color generation from the basic single nanopillar geometry in low-refractive-index (n < 1.6) material. Grayscale and full color palettes were achieved that allow decomposition onto hue, saturation, and brightness values. This approach enabled the "painting" of arbitrary colorful and grayscale images by mapping desired prints to precisely controllable parameters during 3D printing. We further extend our understanding of the scattering properties of the low-refractive-index nanopillar to demonstrate grayscale inversion and color desaturation and steganography at the level of single nanopillars.

18.
Chem Sci ; 12(46): 15308-15317, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34976351

RESUMO

Manipulating O2 activation via nanosynthetic chemistry is critical in many oxidation reactions central to environmental remediation and chemical synthesis. Based on a carefully designed plasmonic Ru/TiO2-x catalyst, we first report a room-temperature O2 dissociation and spillover mechanism that expedites the "dream reaction" of selective primary C-H bond activation. Under visible light, surface plasmons excited in the negatively charged Ru nanoparticles decay into hot electrons, triggering spontaneous O2 dissociation to reactive atomic ˙O. Acceptor-like oxygen vacancies confined at the Ru-TiO2 interface free Ru from oxygen-poisoning by kinetically boosting the spillover of ˙O from Ru to TiO2. Evidenced by an exclusive isotopic O-transfer from 18O2 to oxygenated products, ˙O displays a synergistic action with native ˙O2 - on TiO2 that oxidizes toluene and related alkyl aromatics to aromatic acids with extremely high selectivity. We believe the intelligent catalyst design for desirable O2 activation will contribute viable routes for synthesizing industrially important organic compounds.

19.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33328223

RESUMO

Materials that exhibit large and rapid switching of their optical properties in the visible spectrum hold the key to color-changing devices. Antimony trisulfide (Sb2S3) is a chalcogenide material that exhibits large refractive index changes of ~1 between crystalline and amorphous states. However, little is known about its ability to endure multiple switching cycles, its capacity for recording high-resolution patterns, nor the optical properties of the crystallized state. Unexpectedly, we show that crystalline Sb2S3 films that are just 20 nm thick can produce substantial birefringent phase retardation. We also report a high-speed rewritable patterning approach at subdiffraction resolutions (>40,000 dpi) using 780-nm femtosecond laser pulses. Partial reamorphization is demonstrated and then used to write and erase multiple microscale color images with a wide range of colors over a ~120-nm band in the visible spectrum. These solid-state, rapid-switching, and ultrahigh-resolution color-changing devices could find applications in nonvolatile ultrathin displays.

20.
Nanoscale ; 12(46): 23663-23672, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33216083

RESUMO

Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core-shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA