Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 117(2): 157-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26776148

RESUMO

BACKGROUND: Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease characterized by an absence or marked reduction of lysosomal N-acetylgalactosamine-4-sulfatase activity. Affected individuals have widespread accumulation of unmetabolized glycosaminoglycan substrates leading to detrimental effects. Recombinant human N-acetylgalactosamine 4-sulfatase (rhASB) is an approved enzyme replacement therapy for patients with MPS VI. Despite the known efficacy of weekly 4-h rhASB infusions, some clinicians wish to treat patients using reduced infusion times. This study compared the pharmacodynamics, pharmacokinetics, and tissue biodistribution of rhASB when administered as 2- and 4-h intravenous infusions using a feline model of MPS VI. METHODS: Study animals were MPS VI-affected cats that demonstrate clinical signs and biochemical derangements similar to human MPS VI patients. Beginning at age 4weeks, animals received weekly 2-h (N=6) or 4-h (N=6) IV infusions of rhASB for 26weeks (Naglazyme® [galsulfase] Solution for Intravenous Infusion; BioMarin Pharmaceutical, Inc.). The control group consisted of untreated MPS VI-affected cats (N=6). The pharmacokinetic parameters of plasma rhASB and urinary glycosaminoglycan were determined at weeks 13 and 26. Animals were euthanized 48h after the last infusion and tissue concentration of ASB, GAG and ß-glucuronidase were measured in the liver, spleen, aorta, and kidney. Skeletal and ophthalmological evaluations were performed within 2weeks of euthanasia. RESULTS: At week 13, the mean AUC0-t in animals treated with 4-h infusions was similar to 2-h infusions while the Cmax of the 4-h infusion was 50% of the 2-h infusion. By week 26, the mean AUC0-t of the 4-h infusion was 1.3-fold higher than the 2-h infusion (p<0.05) while Cmax of the 4-h infusion was 70% of the 2-h infusion (p<0.05). Among animals treated with 2- and 4-h infusions, there was no difference in urinary GAG excretion, tissue GAG storage, tissue galsulfase activity, and ß-glucuronidase but all were significantly different than control animals (for each, p<0.001). Radiographic skeletal abnormality scores for animals were also similar for both treatment groups and significantly higher than control animals (p<0.001). There was no significant difference in corneal clouding scores among treated and untreated animals. CONCLUSIONS: There was no significant difference in clinical outcomes when rhASB was administered to MPS VI affected cats as 2- and 4-h infusions over 26weeks. Additional studies may determine if shorter infusion times are appropriate for MPS VI patients without significant infusion-associated reactions.


Assuntos
Mucopolissacaridose VI/tratamento farmacológico , N-Acetilgalactosamina-4-Sulfatase/administração & dosagem , Animais , Gatos , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Terapia de Reposição de Enzimas , Feminino , Glicosaminoglicanos/urina , Humanos , Infusões Intravenosas , Masculino , Mucopolissacaridose VI/diagnóstico por imagem , Mucopolissacaridose VI/urina , N-Acetilgalactosamina-4-Sulfatase/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual
2.
Mol Ther ; 24(2): 206-216, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26447927

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia Genética/métodos , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucuronidase/líquido cefalorraquidiano , Glicosaminoglicanos/metabolismo , Injeções Intravenosas , Injeções Espinhais , Masculino , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/metabolismo
3.
Mol Ther ; 23(8): 1298-1307, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022732

RESUMO

The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Cães , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Células HEK293 , Humanos , Iduronidase/deficiência , Macaca mulatta , Transgenes
4.
Sci Transl Med ; 7(276): 276ra26, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25717099

RESUMO

Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-ß-cyclodextrin (HPßCD) to cats with NPC disease ameliorated hepatic disease, but doses sufficient to reduce neurological disease resulted in pulmonary toxicity. However, direct administration of HPßCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near-normal concentrations of cholesterol and sphingolipids. Moreover, administration of intracisternal HPßCD to NPC cats with ongoing cerebellar dysfunction slowed disease progression, increased survival time, and decreased the accumulation of brain gangliosides. An increase in hearing threshold was identified as a potential adverse effect. These studies in a feline animal model have provided critical data on efficacy and safety of drug administration directly into the central nervous system that will be important for advancing HPßCD into clinical trials.


Assuntos
Cisterna Magna/patologia , Cisterna Magna/fisiopatologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/fisiopatologia , Células de Purkinje/patologia , beta-Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Envelhecimento/patologia , Alanina Transaminase/sangue , Animais , Ataxia/sangue , Ataxia/complicações , Ataxia/patologia , Limiar Auditivo , Calbindinas/metabolismo , Gatos , Morte Celular , Imunofluorescência , Gangliosídeo G(M2)/metabolismo , Inflamação/complicações , Inflamação/patologia , Injeções Subcutâneas , Fígado/patologia , Hepatopatias/sangue , Hepatopatias/complicações , Hepatopatias/patologia , Pulmão/patologia , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/complicações , Células de Purkinje/metabolismo , Coloração e Rotulagem , Análise de Sobrevida , beta-Ciclodextrinas/administração & dosagem
5.
Proc Natl Acad Sci U S A ; 111(41): 14894-9, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267637

RESUMO

Patients with mucopolysaccharidosis type I (MPS I), a genetic deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), exhibit accumulation of glycosaminoglycans in tissues, with resulting diverse clinical manifestations including neurological, ocular, skeletal, and cardiac disease. MPS I is currently treated with hematopoietic stem cell transplantation or weekly enzyme infusions, but these therapies have significant drawbacks for patient safety and quality of life and do not effectively address some of the most critical clinical sequelae, such as life-threatening cardiac valve involvement. Using the naturally occurring feline model of MPS I, we tested liver-directed gene therapy as a means of achieving long-term systemic IDUA reconstitution. We treated four MPS I cats at 3-5 mo of age with an adeno-associated virus serotype 8 vector expressing feline IDUA from a liver-specific promoter. We observed sustained serum enzyme activity for 6 mo at ∼ 30% of normal levels in one animal, and in excess of normal levels in three animals. Remarkably, treated animals not only demonstrated reductions in glycosaminoglycan storage in most tissues, but most also exhibited complete resolution of aortic valve lesions, an effect that has not been previously observed in this animal model or in MPS I patients treated with current therapies. These data point to clinically meaningful benefits of the robust enzyme expression achieved with hepatic gene transfer that extend beyond the economic and quality of life advantages over lifelong enzyme infusions.


Assuntos
Doenças Cardiovasculares/terapia , Terapia Genética , Fígado/metabolismo , Mucopolissacaridose I/terapia , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Doenças Cardiovasculares/patologia , Gatos , Dependovirus/genética , Feminino , Vetores Genéticos/metabolismo , Glicosaminoglicanos/metabolismo , Cofator II da Heparina/metabolismo , Iduronidase/sangue , Iduronidase/genética , Iduronidase/uso terapêutico , Fígado/patologia , Masculino , Dados de Sequência Molecular , Mucopolissacaridose I/sangue , Mucopolissacaridose I/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Trombina/metabolismo , Distribuição Tecidual , Transdução Genética
6.
Mol Ther ; 22(12): 2018-2027, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25027660

RESUMO

Enzyme replacement therapy has revolutionized the treatment of the somatic manifestations of lysosomal storage diseases (LSD), although it has been ineffective in treating central nervous system (CNS) manifestations of these disorders. The development of neurotrophic vectors based on novel serotypes of adeno-associated viruses (AAV) such as AAV9 provides a potential platform for stable and efficient delivery of enzymes to the CNS. We evaluated the safety and efficacy of intrathecal delivery of AAV9 expressing α-l-iduronidase (IDUA) in a previously described feline model of mucopolysaccharidosis I (MPS I). A neurological phenotype has not been defined in these animals, so our analysis focused on the biochemical and histological CNS abnormalities characteristic of MPS I. Five MPS I cats were dosed with AAV9 vector at 4-7 months of age and followed for 6 months. Treated animals demonstrated virtually complete correction of biochemical and histological manifestations of the disease throughout the CNS. There was a range of antibody responses against IDUA in this cohort which reduced detectable enzyme without substantially reducing efficacy; there was no evidence of toxicity. This first demonstration of the efficacy of intrathecal gene therapy in a large animal model of a LSD should pave the way for translation into the clinic.


Assuntos
Gatos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Terapia Genética/métodos , Iduronidase/sangue , Iduronidase/líquido cefalorraquidiano , Mucopolissacaridose I/terapia , Animais , Dependovirus/enzimologia , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Injeções Espinhais , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA