Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Scientifica (Cairo) ; 2023: 6613670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520043

RESUMO

Reactive oxygen species (ROS) contribute to cancer growth and metastasis. Using antioxidants to modulate cellular ROS levels is a promisingstrategy for cancer prevention and treatment. Calophyllum inophyllum L., or tamanu, is a medicinal plant renowned for its anti-inflammatory, antioxidant, and anticancer properties in traditional medicine systems. However, the anticancer effects of C. inophyllum extract on cellular ROS remain unexplored. This study represents the first report on such effects and provides the potential mechanisms underlying the anticancer properties of C. inophyllum extract. The branches of C. inophyllum were extracted, and the extract was comprehensively analyzed for phytochemical constituents, antioxidant capacity, total phenolic content, and total flavonoid content. Subsequently, the extract's potential anticancer properties were evaluated using patient-derived cells from breast and lung cancer. The results revealed that the C. inophyllum extract possesses notable antioxidant activity and demonstrated no cytotoxicity within the initial 24 h of treatment. However, after 72 h, it exhibited significant antiproliferative effects. Moreover, the extract exhibited inhibitory properties against migration and invasion at concentrations below the IC50, which corresponded to the expression of related genes. Notably, these effects correlated with the reduction of intracellular ROS levels. Overall, our findings highlight the anticancer potential of C. inophyllum extract, emphasize its ability to modulate cellular ROS levels and target key molecular pathways involved in cancer progression. This study sheds light on the promising therapeutic implications of C. inophyllum extract as a novel agent for cancer treatment, which is safe for normal cells.

2.
PeerJ ; 11: e15187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131988

RESUMO

Background: The spread of artemisinin (ART)-resistant Plasmodium falciparum threatens the control of malaria. Mutations in the propeller domains of P. falciparum Kelch13 (k13) are strongly associated with ART resistance. Ferredoxin (Fd), a component of the ferredoxin/NADP+ reductase (Fd/FNR) redox system, is essential for isoprenoid precursor synthesis in the plasmodial apicoplast, which is important for K13-dependent hemoglobin trafficking and ART activation. Therefore, Fd is an antimalarial drug target and fd mutations may modulate ART sensitivity. We hypothesized that loss of Fd/FNR function enhances the effect of k13 mutation on ART resistance. Methods: In this study, methoxyamino chalcone (C3), an antimalarial compound that has been reported to inhibit the interaction of recombinant Fd and FNR proteins, was used as a chemical inhibitor of the Fd/FNR redox system. We investigated the inhibitory effects of dihydroartemisinin (DHA), C3, and iron chelators including deferiprone (DFP), 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and deferiprone-resveratrol hybrid (DFP-RVT) against wild-type (WT), k13 mutant, fd mutant, and k13 fd double mutant P. falciparum parasites. Furthermore, we investigated the pharmacological interaction of C3 with DHA, in which the iron chelators were used as reference ART antagonists. Results: C3 showed antimalarial potency similar to that of the iron chelators. As expected, combining DHA with C3 or iron chelators exhibited a moderately antagonistic effect. No differences were observed among the mutant parasites with respect to their sensitivity to C3, iron chelators, or the interactions of these compounds with DHA. Discussion: The data suggest that inhibitors of the Fd/FNR redox system should be avoided as ART partner drugs in ART combination therapy for treating malaria.


Assuntos
Antimaláricos , Chalcona , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Ferredoxinas/química , Chalcona/farmacologia , Deferiprona/farmacologia , Malária Falciparum/tratamento farmacológico , Ferredoxina-NADP Redutase , Quelantes de Ferro/farmacologia
3.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499779

RESUMO

Owing to its excellent mechanical properties and aesthetic tooth-like appearance, lithium disilicate glass-ceramic is more attractive as a crown for dental restorations. In this study, lithium disilicate glass-ceramics were prepared from SiO2-Li2O-K2O-P2O5-CeO2 glass systems with various Al2O3 contents. The mixed glass was then heat-treated at 600 °C and 800 °C for 2 h to form glass-ceramic samples. Phase formation, microstructure, mechanical properties and bioactivity were investigated. The phase formation analysis confirmed the presence of Li2Si2O5 in all the samples. The glass-ceramic sample with an Al2O3 content of 1 wt% showed rod-like Li2Si2O5 crystals that could contribute to the delay in crack propagation and demonstrated the highest mechanical properties. Surface treatment with hydrofluoric acid followed by a silane-coupling agent provided the highest micro-shear bond strength for all ceramic conditions, with no significant difference between ceramic samples. The biocompatibility tests of the material showed that Al2O3-added lithium disilicate glass-ceramic sample was bioactive, thus activating protein production and stimulating the alkaline phosphatase (ALP) activity of osteoblast-like cells.

4.
Bioinorg Chem Appl ; 2022: 3869337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466999

RESUMO

Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36293784

RESUMO

This study aimed to investigate the effects of storing expressed human milk (HM) at different domestic storage temperatures on the secretory immunoglobulin A (SIgA) concentration and lysozyme activity. Forty mothers of full-term infants aged one to six months provided milk samples. The fresh samples were examined within 24 h of expression, and the other samples were stored in a refrigerator for four days or in two types of freezers for six months. The SIgA concentrations and lysozyme activity in the milk samples were studied using enzyme-linked immunosorbent assay (ELISA) kits and fluorometric lysozyme activity assay kits, respectively. The pairwise comparisons of the SIgA concentration and lysozyme activity were carried out using one-way analysis of variance with Dunnett T3 or Kruskal-Wallis tests with Bonferroni correction, depending on the data distribution. The mean temperatures of the refrigerator, upright freezer on top of the refrigerator, and deep freezer (chest freezer) were 2.0, -16.7, and -22.3 °C, respectively. Our study results highlight that the SIgA concentration and lysozyme activity of HM stored in the refrigerator for four days and in freezers for six months were significantly lower than those of fresh HM (p < 0.001). During the first six months of storage in both types of freezers, the SIgA levels were stable, whereas the lysozyme activity significantly decreased (p < 0.001). HM stored in the deep freezer had a higher SIgA concentration and lysozyme activity than HM stored in the upright freezer on top of the refrigerator. Our data support the superiority of fresh human milk over stored HM. If HM is to be stored, then storage in a deep freezer is potentially a more effective method for the preservation of SIgA concentrations and lysozyme activity than storage by refrigeration for four days or in an upright freezer on top of a refrigerator for six months.


Assuntos
Leite Humano , Refrigeração , Lactente , Feminino , Humanos , Muramidase , Temperatura , Imunoglobulina A , Imunoglobulina A Secretora
6.
Des Monomers Polym ; 25(1): 231-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979198

RESUMO

Sesamin, a significant lignin compound isolated from sesame (Sesamum indicum Linn), is well known for its antioxidant, anti-inflammatory, and tissue growth promotion properties. Bioabsorbable poly(ε-caprolactone) (PCL) is also a well-known polymer applied to various fields of medicine as biomaterials. The main objective of this research was to produce a prototype material from PCL and sesamin by electrospinning technique for bone tissue engineering applications. Dichloromethane and dimethylformamide (7:3) mixture was used as the solvent system for fabrication of PCL nanofiber with different loads of sesamin concentrations (1-6 wt%). The crystallinity levels decreasing and the entrapment efficiency increasing (86.87%-93.97%) were observed while sesamin concentrations were increased. The infrared spectra of electrospun mats confirmed that sesamin corporated into fibrous networks. The sesamin-loaded PCL nanofibrous membranes showed a significant release of sesamin in the range of 1.28-8.16 µg/mL within 10 weeks. The release data were fitted to zero order, first order, Higuchi and Korsmeyer-Peppas models to evaluate sesamin-releasing mechanisms and kinetics. The releasing kinetics of sesamin followed the Fickian diffusion mechanism of Korsmeyer-Peppas (R2 = 0.99). In vitro experiments with an osteosarcoma cell line (MG-63) revealed cell attachment, biocompatibility, and promotion of bone marker expression, the alkaline phosphatase (ALP) activity were studied. The electrospun PCL nanofiber loaded with sesamin had the potential as a scaffold for sesamin delivery to bone cells and applications in biomedicine.

7.
Int Breastfeed J ; 17(1): 52, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799170

RESUMO

BACKGROUND: The percentage of infants receiving frozen human milk (HM) is increasing. The effects of thawing and warming on the secretory immunoglobulin A (SIgA) level and lysozyme activity in frozen HM should be investigated to identify optimal methods for preserving immune factors in frozen HM. METHODS: Milk samples were collected from 40 mothers with healthy full-term infants who had been lactating for one to six months. The baseline samples were analyzed within 24 h after collection, and the other samples were frozen at -18 °C before analyses. We compared two methods: placing the container overnight in a refrigerator at 4 °C before warming (slow thawing) and immediately thawing in warm water after removing the sample from the freezer (rapid thawing). Additionally, we investigated the effects of the warming temperature by comparing room temperature (25 °C) and physiological temperature (37 °C). The SIgA concentrations and lysozyme activities in the milk samples were determined using ELISA kits and fluorometric lysozyme activity assay kits, respectively. RESULTS: The SIgA concentrations and lysozyme activity in frozen HM were 16.5-52.1% and 16.8-39.3% lower than those in fresh HM, respectively. The SIgA concentrations in frozen HM were stable during slow thawing at 37 °C (p = 0.072) compared with those in fresh HM. The SIgA concentrations and lysozyme activity were maintained at significantly higher levels during slow thawing than during rapid thawing at 25 °C (p = 0.002 and p < 0.001, respectively). Slow thawing preserved higher SIgA concentrations and lysozyme activity than rapid thawing at 37 °C, but the difference was not significant. CONCLUSIONS: The SIgA level in HM frozen at -18 °C for two months was stable after overnight thawing in the refrigerator (4 °C for 12 h) before warming to 37 °C compared with that in fresh milk. The thawing of HM in the refrigerator overnight (and then warming to 25 °C or 37 °C for 30 min) has the potential to preserve the SIgA concentration and lysozyme activity to a greater extent than heating immediately after removal from the freezer. Broader temperature ranges should be analyzed to determine the temperature that minimizes the losses in SIgA concentration and lysozyme activity in HM.


Assuntos
Imunoglobulina A Secretora , Leite Humano , Muramidase , Aleitamento Materno , Feminino , Congelamento , Humanos , Imunoglobulina A Secretora/análise , Lactente , Lactação , Leite Humano/química , Temperatura
8.
Plants (Basel) ; 11(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684265

RESUMO

"People-Forest-Miang" communities are villages located in the cultivated area of Camellia sinensis var. assamica, or Cha Miang, in northern Thailand. Cha Miang forests are a form of agriculture relying on forest-rich bioresources. This study focuses on a survey of the diversity of medicinal plants used by "People-Forest-Miang" communities in Mae Kampong Village, Chiang Mai, Thailand. The results demonstrated that 73 species of medicinal plants were used to prevent and treat various ailments. The highest number of species (30.14%) was used for musculoskeletal system disorders, followed by digestive system disorders (21.92%) and unspecified medicinal disorders (15.07%). The alkaline phosphatase (ALP) is the most widely recognized biochemical marker for osteoblast activity. The ALP activity of ethanol and deionized water extracts of the nine selected medicinal plants used for musculoskeletal system disorders were examined in the MG63 cell line. The results showed that the numerous water extracts, including MKP1, MKP2, MKP5, MKP6, MKP7, MKP8, and MKP9, and the ethanolic extracts-namely, MKP2, MKP3, MKP7, and MKP9-significantly increased ALP activity in the MG-63 cell line. The findings indicate that some medicinal plants may be further studied for active chemicals and developed as natural active pharmaceutical ingredients for osteoprotective products.

9.
Nutrients ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35334846

RESUMO

As Thailand moves toward an aging society, frailty has become a concern amongst northern Thai elderly. The causes of frailty are multifactorial and include genetic, environmental, and socio-economic factors; diet is of particular interest. A cross-sectional study was conducted from September to October 2017 to investigate what kind of diets normally consumed by 350 Thai elders were associated with frailty using a questionnaire and frailty determination by Fried's phenotype followed by phytochemical analyses of the diets. The multivariable logistic regression analysis demonstrated a significant positive association between certain foods and lower frailty. Guava fruit and Acacia pennata vegetable consumption had lower odds of frailty, which were 0.52 times (95% CI 0.28−0.96, p = 0.037) and 0.42 times (95% CI 0.21−0.83, p = 0.012) when adjusted for the potential confounders. The phytochemical analyses of guava fruit showed a significantly higher amount of total flavonoids (p < 0.001), total phenolic compounds (p = 0.002), and antioxidant capacity, including DPPH (p < 0.001), ABTS (p < 0.001), and FRAP (p = 0.002) when compared to those of banana. Acacia pennata vegetable contained a significantly higher amount of total phenolic compounds (p = 0.012) when compared to those of lettuce. These findings may assist in health promotion programs of frailty prevention by encouraging an increase in consumption of either guava fruit or Acacia pennata vegetable among Thai elderly.


Assuntos
Acacia , Fragilidade , Psidium , Estudos Transversais , Fragilidade/etiologia , Fragilidade/prevenção & controle , Frutas , Tailândia , Verduras
10.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056867

RESUMO

The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.


Assuntos
Acetaminofen/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Syzygium/química , Alanina Transaminase/sangue , Animais , Antocianinas , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Enzimas/efeitos dos fármacos , Enzimas/metabolismo , Etanol/química , Feminino , Frutas/química , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Polifenóis/análise , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Substâncias Protetoras/uso terapêutico , Substâncias Protetoras/toxicidade , Ratos Wistar , Silimarina/farmacologia , Silimarina/uso terapêutico , Tailândia
11.
Nutrients ; 13(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959791

RESUMO

Cognitive frailty (CF) is defined by the coexistence of physical frailty and mild cognitive impairment. Malnutrition is an underlying factor of age-related conditions including physical frailty. However, the evidence associating malnutrition and cognitive frailty is limited. This cross-sectional study aimed to determine the association between malnutrition and CF in the elderly. A total of 373 participants aged 65-84 years were enrolled after excluding those who were suspected to have dementia and depression. Then, 61 CF and 45 normal participants were randomly selected to measure serum prealbumin level. Cognitive function was assessed using the Montreal Cognitive Assessment-Basic (MoCA-B). Modified Fried's criteria were used to define physical frailty. Nutritional status was evaluated by the Mini Nutritional Assessment-short form (MNA-SF), serum prealbumin, and anthropometric measurements. The prevalence of CF was 28.72%. Malnourished status by MNA-SF category (aOR = 2.81, 95%CI: 1.18-6.67) and MNA-SF score (aOR = 0.84, 95%CI = 0.74-0.94) were independently associated with CF. However, there was no correlation between CF and malnutrition assessed by serum prealbumin level and anthropometric measurements. Other independent risk factors of CF were advanced age (aOR = 1.06, 95%CI: 1.02-1.11) and educational level below high school (aOR = 6.77, 95%CI: 1.99-23.01). Malnutrition was associated with CF among Thai elderly. High-risk groups who are old and poorly educated should receive early screening and nutritional interventions.


Assuntos
Disfunção Cognitiva/epidemiologia , Idoso Fragilizado/psicologia , Fragilidade/epidemiologia , Vida Independente/psicologia , Desnutrição/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento Cognitivo , Disfunção Cognitiva/psicologia , Estudos Transversais , Feminino , Fragilidade/psicologia , Avaliação Geriátrica , Humanos , Masculino , Desnutrição/psicologia , Testes de Estado Mental e Demência , Avaliação Nutricional , Estado Nutricional , Prevalência , Fatores de Risco , Tailândia/epidemiologia
12.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34772005

RESUMO

Iron is essential for all living organisms. It is strictly controlled by iron transporters, transferrin receptors, ferroportin and hepcidin. Erythroferrone (ERFE) is an iron-regulatory hormone which is highly expressed in erythroblasts by erythropoietin (EPO) stimulation and osteoblasts independently of EPO by sequestering bone morphogenetic proteins and inhibiting hepatic hepcidin expression. Although the hepcidin suppressive function of ERFE is known, its receptors still require investigation. Here, we aim to identify ERFE receptors on the HepG2 and Huh7 cells responsible for ERFE. Recombinant ERFE (rERFE) was first produced in HEK293 cells transfected with pcDNA3.1 + ERFE, then purified and detected by Western blot. The liver cells were treated with an rERFE-rich medium of transfected HEK293 cells and a purified rERFE-supplemented medium at various time points, and hepcidin gene (Hamp1) expression was determined using qRT-PCR. The results show that 37-kD rERFE was expressed in HEK293 cells. Hamp1 was suppressed at 3 h and 6 h in Huh7 cells after rERFE treatments (p < 0.05), then restored to the original levels. Hamp1 was activated after treatment with purified rERFE for 24 h and 48 h. Together, these results reveal that ERFE suppressed Hamp1 expression in liver cells, possibly acting on membrane ERFE receptor, which in Huh7 cells was more sensitive to the ERFE concentrate.

13.
Polymers (Basel) ; 13(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072334

RESUMO

Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is considered a suitable polymer for drug delivery systems and bone tissue engineering due to its biocompatibility and biodegradability. However, the lack of bioactivity and antibacterial activity hinders its biomedical applications. In this study, mesoporous bioactive glass nanoparticles (MBGN) were incorporated into PHBV to enhance its bioactivity, while cinnamaldehyde (CIN) was loaded in MBGN to introduce antimicrobial activity. The blank (PHBV/MBGN) and the CIN-loaded microspheres (PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20) were fabricated by emulsion solvent extraction/evaporation method. The average particle size and zeta potential of all samples were investigated, as well as the morphology of all samples evaluated by scanning electron microscopy. PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20 significantly exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli in the first 3 h, while CIN releasing behavior was observed up to 7 d. Human osteosarcoma cell (MG-63) proliferation and attachment were noticed after 24 h cell culture, demonstrating no adverse effects due to the presence of microspheres. Additionally, the rapid formation of hydroxyapatite on the composite microspheres after immersion in simulated body fluid (SBF) during 7 d revealed the bioactivity of the composite microspheres. Our findings indicate that this system represents an alternative model for an antibacterial biomaterial for potential applications in bone tissue engineering.

14.
Plants (Basel) ; 10(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800467

RESUMO

The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacteria is an environmentally friendly biodegradable polymer. The low yield of PHBV's production is the main hindrance to its sustainable production, and the manipulation of PHBV production processes could potentially overcome this obstacle. The present research investigated evolutionarily divergent cyanobacteria obtained from local environments of Thailand. Among the strains tested, Cyanosarcina sp. AARL T020, a hot spring cyanobacterium, showed a high rate of PHBV accumulation with a fascinating 3-hydroxyvalerate mole fraction. A two-stage cultivation strategy with sole organic carbon supplementation was successful in maximizing cyanobacterial PHBV production. The use of an optimized medium in the first stage of cultivation provided a 4.9-fold increase in biomass production. Subsequently, the addition of levulinic acid in the second stage of cultivation can induce significant biomass and PHBV production. With this strategy, the final biomass production and PHBV productivity were increased by 6.5 and 73.2 fold, respectively. The GC-MS, FTIR, and NMR analyses confirmed that the obtained PHBV consisted of two subunits of 3-hydroxyvaryrate and 3-hydroxybutyrate. Interestingly, the cyanobacterial PHBV contained a very high 3-hydroxyvalerate mole fraction (94%) exhibiting a low degree of crystallinity and expanding in processability window, which could be applied to polymers for desirable advanced applications.

15.
Int Breastfeed J ; 15(1): 90, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126900

RESUMO

BACKGROUND: An extended duration of breastfeeding of up to two years is encouraged by many health authorities, but information regarding the composition of milk after one year postpartum is limited. The goal of this study was to determine the association between the duration of lactation and macronutrient contents, immunoglobulin A (IgA) levels and total antioxidant capacity (TAC) in human milk (HM), from 1 to 24 months postpartum. METHODS: Cross-sectional milk samples were collected between January and April 2019 from mothers with healthy full-term children who had been lactating for 1 to 24 months. The HM was biochemically analyzed for protein and carbohydrate contents by colorimetric assays. The fat content was determined by capillary centrifugation, and the energy content was calculated from the results of centrifugation assays. IgA levels and TAC were determined by ELISA and a Trolox equivalent antioxidant capacity (TEAC) assay, respectively. Pearson's correlation coefficient and Spearman's rank correlation coefficient were used to determine associations between months of lactation and milk composition, and multiple regression analysis was used to assess associations between months of lactation and milk composition adjusted for relevant covariates. Differences were considered significant at p < 0.05. RESULTS: One hundred eighty-four milk samples were analyzed. The month of lactation was positively associated with the fat concentration (B = 0.31, SE = 0.09, p = 0.001), energy content (B = 3.11, SE = 0.92, p = 0.001), and IgA (B = 4.17, SE = 1.08, p < 0.001) but negatively associated with the carbohydrate concentration (B = - 0.22, SE = 0.01, p = 0.04). No association was observed between the month of lactation and the protein concentration or TAC after adjustment for maternal age, maternal BMI, birth order, and breastfeeding frequency. CONCLUSION: The duration of lactation was found to be positively associated with the fat, energy, and IgA content in HM for up to two years postpartum, and negatively associated with carbohydrate concentration. More prospective cohort studies are needed to obtain evidence-based knowledge regarding the changes in HM composition throughout the course of lactation.


Assuntos
Antioxidantes/análise , Imunoglobulina A/análise , Leite Humano/química , Nutrientes/análise , Adulto , Aleitamento Materno/psicologia , Carboidratos/análise , Estudos Transversais , Gorduras/análise , Feminino , Humanos , Mães/psicologia , Tailândia , Fatores de Tempo , Adulto Jovem
16.
BMC Complement Med Ther ; 20(1): 105, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245457

RESUMO

BACKGROUND: Cissus quadrangularis Linn. (CQ) has been used in Indian and Thai traditional medicine for healing bone fractures because of numerous active ingredients in CQ. It is still unclear which compounds are the active ingredients for bone formation. METHODS: The molecular docking technique, the ethanolic extraction along with hexane fractionation, and an in vitro experiment with a human osteoblast cell line (MG-63) were used to narrow down the active compounds, to prepare the CQ extract, and to test biological activities, respectively. RESULTS: The molecular docking technique revealed that quercetin and ß-sitosterol had highest and lowest potential to bind to estrogen receptors, respectively. Compared to the crude ethanol extract (P1), the ethanolic fraction (P2) was enriched with rutin and quercetin at 65.36 ± 0.75 and 1.06 ± 0.12 mg/g, respectively. Alkaline phosphatase (ALP) activity was significantly enhanced in osteoblasts exposed to the P2 in both tested concentrations. The amount of hydroxyproline was slightly increased in the P1 treatment, while osteocalcin was inhibited. Moreover, the P2 significantly activated osteoprotegerin (OPG) and inhibited receptor activator of nuclear factor κ ligand (RANKL) expression. CONCLUSIONS: Taken together, the enriched rutin and quercetin fraction of CQ triggered the molecules involved in bone formation and the molecules inhibiting bone resorption.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Cissus/química , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Rutina/farmacologia , Sitosteroides/farmacologia , Linhagem Celular , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Quercetina/química , Rutina/química , Sitosteroides/química
17.
J Biomol Struct Dyn ; 38(5): 1272-1282, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30907243

RESUMO

Sclerostin, an antagonist of the Wnt/ß-catenin signaling pathway, was discovered as a potential therapeutic target for stimulating bone formation in osteoporosis. In this study, molecular docking was employed to predict the binding of 29 herbal compounds, which were reported as bone formation stimulators, to the loop2 region of sclerostin. Then, the 50 ns molecular dynamics (MD) simulation of the complexes between sclerostin and the top 10 hits obtained from molecular docking were carried out. Root mean square deviations (RMSDs) analysis of MD trajectories pointed out that all ligands-complexes remain stable throughout the duration of MD simulations. In addition, the molecular mechanics/generalized born surface area (MM/GBSA) binding free energy and energy decomposition analyses were determined. The results here suggested that baicalin is the most promising inhibitor of sclerostin. Interestingly, baicalin binds to sclerostin via the hydrophobic interaction with the amino acid residues on loop2 region but outside the Pro-Asn-Ala-Ile-Gly (PNAIG) motif, particularly the Arg-Gly-Lys-Trp-Trp-Arg (RGKWWR) motif. This finding could be a novel strategy for developing new sclerostin inhibitors in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Sequência de Aminoácidos , Aminoácidos , Simulação de Acoplamento Molecular
18.
J Nanosci Nanotechnol ; 20(1): 222-228, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383159

RESUMO

In this work, bioglass ceramics have been successfully fabricated by the modified incorporation method. In this method, solid-state reaction and conventional glass-melting techniques were employed to separately prepare barium hexaferrite (BaFe12O19: BF) and 45S5 bioactive glass powders. The mixture of BF and 45S5 glass powder was then re-melted at 1300 °C to form base glass. In order to change the prepared glass to glass-ceramic samples, a heat treatment technique was employed at temperatures ranging between 695 and 768 °C. The results confirmed the occurrence of Na6Ca3Si6O18, BaFe12O19 and Fe2O3 phases in prepared glass ceramics. It was found that BF addition caused an alteration in magnetic behavior from soft to hard. For bioactivity assessment, the samples were soaked in simulated body fluid (SBF) for 14 days. An apatite layer was found on the surfaces of glass-ceramics confirming their bioactivity. In addition, biocompatibility was assessed by MTT (3,[4,4-dimethy thiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay which showed that the ferrimagnetic bioactive glass-ceramics had good cytocompatibility and no cytotoxicity.

19.
Planta Med ; 83(3-04): 268-276, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27574898

RESUMO

Zingerone, an active compound that is present in cooked ginger, has been claimed to be a bioactive ingredient that holds the potential of preventing and/or treating diseases involving inflammation. In this study, zingerone was used to discover its properties against joint inflammation using interleukin-1ß-induced osteoarthritis in cartilage explant and cell culture models. Zingerone was supplemented into the cartilage explant and cell culture media at different concentrations along with the presence of interleukin-1ß, an inducer of osteoarthritis. Markers indicating cartilage degradation, inflammation, and the signaling molecules involved in the inflammatory induction were investigated. Diacerien, an anti-osteoarthritic drug, was used as a positive control. Zingerone at a concentration of 40 µM reduced the level of matrix metalloproteinase-13 to about 31.95 ± 4.33 % compared with the interleukin-1ß-treated group and halted cartilage explant degradation as indicated by reducing the accumulative release of sulfated glycosaminoglycans by falling to the control concomitantly with an elevation of the remaining contents of uronic acid and collagen in the explant tissues when zingerone was added. In the SW1353 cell line model, zingerone efficiently suppressed the expression of TNF-α, interleukin-6, and interleukin-8 mRNA levels and tended to reduce the levels of both p38 and c-Jun N-terminal kinase phosphorylation. From the results of this study, it can be concluded that zingerone potentially reduced cartilage degradation, which is partially involved in p38 and c-Jun N-terminal kinases of the mitogen activator protein kinase signaling pathway leading to the reduction of proinflammatory cytokine amplification effects and cartilage-degrading enzyme syntheses. This finding supports the contention that ginger holds positive pharmaceutical effects against osteoarthritis.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Guaiacol/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Cartilagem/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glicosaminoglicanos/metabolismo , Guaiacol/farmacologia , Humanos , Interleucinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Articulação Metacarpofalângica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/prevenção & controle , RNA Mensageiro/biossíntese , Suínos , Fator de Necrose Tumoral alfa/metabolismo
20.
Mater Sci Eng C Mater Biol Appl ; 61: 695-704, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838899

RESUMO

45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive.


Assuntos
Cerâmica/química , Vidro/química , Dióxido de Silício/química , Cristalização , Temperatura Alta , Cinética , Oryza/química , Oryza/metabolismo , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA