Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 222, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892778

RESUMO

BACKGROUND: Schsistosomiasis is endemic in sub-Saharan Africa. It is transmitted by intermediate host snails such as Bulinus and Biomphalaria. An understanding of the abundance and distribution of snail vectors is important in designing control strategies. This study describes the spatial and seasonal variation of B. globosus and Bio. pfeifferi and their schistosome infection rates between May 2014 and May 2015 in Ingwavuma, uMkhanyakude district, KwaZulu-Natal province, South Africa. METHODS: Snail sampling was done on 16 sites once every month by two people for 30 min at each site using the scooping and handpicking methods. Snails collected from each site were screened for schistosome mammalian cercariae by the shedding method. The negative binomial generalised linear mixed model (glmm) was used to determine the relationship between abundances of the intermediate host snails and climatic factors [rainfall, land surface temperatures (LST), seasons, habitats, sampling sites and water physico-chemical parameters including pH and dissolved oxygen (DO)]. RESULTS: In total, 1846 schistosomiasis intermediate host snails were collected during the study period. Biompharia pfeifferi was more abundant (53.36%, n = 985) compared to B. globosus (46.64%, n = 861). Bulinus globosus was recorded at 12 sites (75%) and Bio. pfeifferi was present at 7 sites (43.8%). Biompharia pfeifferi cohabited with B. globosus at all the sites it was present. High numbers of Bio. pfeifferi (n = 872, 88.5%) and B. globosus (n = 705, 81.9%) were found between winter and mid-spring. Monthly rainfall showed a statistically significant negative relationship with the abundance of B. globosus (p < 0.05). Dissolved oxygen (DO) had a statistically significant positive relationship with the abundance of Bio. pfeifferi (p < 0.05) while (LST) had a statistically significant negative relationship (p < 0.05). More B. globosus (8.9%, n = 861) were shedding schistosome mammalian cercariae compared to Bio. pfeifferi (0.1%, n = 985) confirming the already documented high prevalence of S. haematobium in Ingwavuma compared to S. mansoni. CONCLUSION: Results of this study provide updated information on the distribution of schistosomiasis intermediate host snails in the study area and contributes towards the understanding of the transmission dynamics of schistosomiasis at the micro-geographical scale in this area.


Assuntos
Biomphalaria , Bulinus , Esquistossomose/transmissão , Animais , Vetores de Doenças , Dinâmica Populacional , Estações do Ano , África do Sul , Análise Espacial
2.
J Biosci Bioeng ; 125(5): 565-571, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29373307

RESUMO

We investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.2 ± 1.6 mW m-2 and 28 ± 9.6 mW m-2 after day 197, respectively. Low-scan cyclic voltammetry analyses indicated that the onset potential of the HR-MFC was more negative than that of the LR-MFC, suggesting that the higher external resistance led to enrichment of the highly current producing bacteria on the anode surface. All clones of Geobacter retrieved from the LR-MFC and the HR-MFC were members of the Geobacter metallireducens clade. Although the population density of Geobacter decreased from days 366-427 in the HR-MFC, the current density was almost maintained. Multidimensional scaling analyses based on denaturing gradient gel electrophoresis profiles indicated that the dynamics of the biofilm and anolytic communities changed synchronously in the two MFCs, but the dynamics of the bacterial communities in the LR-MFC and the HR-MFC were different from each other, reflecting different processes in adaptation to the different external resistances. The results suggest that the microbial community structure was formed by adapting to higher external resistance, exhibiting more negative onset potential and higher performance of the HR-MFC through collaborating with anode-respiring bacteria and fermenters.


Assuntos
Adaptação Biológica/fisiologia , Bactérias/classificação , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos/microbiologia , Impedância Elétrica , Biofilmes , Eletricidade , Eletrodos , Fermentação , Geobacter
3.
Microbes Environ ; 29(2): 145-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789988

RESUMO

The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Eletricidade , Eletroquímica , Eletrodos/microbiologia , Geobacter/classificação , Geobacter/genética , Eliminação de Resíduos de Serviços de Saúde , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
4.
J Biosci Bioeng ; 116(1): 106-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23490643

RESUMO

It is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs. MEA-I was made with Nafion 117 solution and the other MEAs were made with different configurations of three kinds of polymers. MFC-I equipped with MEA-I exhibited the highest performance with a stable current density of 55 ± 3 mA m⁻². MFC-III equipped with MEA-III with the highest platinum concentration, exhibited the lowest performance with a stable current density of 1.7 ± 0.1 mA m⁻². SEM observation revealed that there were cracks on MEA-III. These results demonstrated that it is significantly important to prevent oxygen-intrusion for improved MFC performance. By comparing the data of DGGE and phylogenetic analyzes, it was suggested that the dominant bacterial communities of MFC-I were constructed with lactate-fermenters and Fe(III)-reducers, which consisted of bacteria affiliated with the genera of Enterobacter, Dechlorosoma, Pelobacter, Desulfovibrio, Propioniferax, Pelosinus, and Firmicutes. A bacterium sharing 100% similarity to one of the DGGE bands was isolated from MFC-I. The 16S rRNA gene sequence of the isolate shared 98% similarity to gram-positive Propioniferax sp. P7 and it was confirmed that the isolate produced electricity in an MFC. These results suggested that these bacteria are valuable for constructing the electron transfer network in MFC.


Assuntos
Bactérias/classificação , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Bactérias/genética , Bactérias/isolamento & purificação , Eletrodos , Filogenia , RNA Ribossômico 16S/genética
5.
J Gen Appl Microbiol ; 58(3): 211-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878739

RESUMO

Three strains of aerobic chemoorganotrophic naphthalene-degrading bacteria (designated TSY03b(T), TSY04, and TSW01) isolated from sediment of a polychlorinated-dioxin-transforming microcosm were characterized. These strains had Gram-negative-stained, rod-shaped cells measuring 0.6‒0.9 µm in width and 1.2‒3.0 µm in length and were motile by means of peritrichous flagella. Naphthalene was utilized as the sole carbon and energy source, and the transcription of a putative aromatic-ring hydroxylating gene was inducible by naphthalene. The major component of cellular fatty acids was summed feature 8 (C18:1ω7c and/or C18:1ω6c), and significant proportions of C18:0 and C19:0 cyclo ω8cis were also found. The major respiratory quinone was ubiquinone-10. The G+C content of the DNA was 60.3‒60.9 mol%. Phylogenetic analyses by studying sequence information on the housekeeping atpD, dnaK, glnII, gyrB, and recA genes as well as on 16S rRNA genes and the 16S-23S rDNA internal transcribed spacer region revealed that the strains grouped with members of the genus Rhizobium, with Rhizobium selenitireducens as their closest relative but formed a distinct lineage at the species level. This was confirmed by genomic DNA-DNA hybridization studies. These phenotypic, genotypic, and phylogenetic data strongly suggest that our isolates should be classified under a novel species of the genus Rhizobium. Thus, we propose the name Rhizobium naphthalenivorans sp. nov. to accommodate the novel isolates. The type strain is TSY03b(T) (= NBRC 107585T = KCTC 23252T).


Assuntos
DNA Bacteriano/genética , Genes Bacterianos , Genes Essenciais , Tipagem de Sequências Multilocus , Naftalenos/metabolismo , Rhizobium/classificação , Rhizobium/metabolismo , Aerobiose , Composição de Bases , Biotransformação , Carbono/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ácidos Graxos/análise , Flagelos/fisiologia , Locomoção , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA