Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Syndromol ; 15(4): 328-332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119451

RESUMO

Introduction: Lateral meningocele syndrome (LMS), also known as Lehman syndrome, is caused by pathogenic variants in exon 33 of NOTCH3. Variants in this final exon of NOTCH3 interrupt the regulatory PEST domain, leading to enhanced NOTCH3 signaling due to prolonged cellular half-life. Individuals with LMS are expected to have multiple lateral meningoceles, developmental delay, neonatal hypotonia, dysmorphic facial features, and feeding difficulties. Case Presentation: We report an 8-year-old male with a history of autism, feeding difficulties, developmental delay, severe intellectual disability, and self-injurious behavior. Genetic testing revealed a NOTCH3 c.6663C>G (p.Y2221*) pathogenic variant in exon 33, consistent with a diagnosis of LMS. A follow-up spine MRI showed a ventral sacral extradural arachnoid cyst but no lateral meningoceles. This individual's most recent exam noted multiple dysmorphic features including prominent metopic ridging, broad forehead, downslanting palpebral fissures, high-arched palate, long narrow philtrum, mild pectus excavatum, and wide-based gait. Discussion/Conclusion: This individual shares the dysmorphic facial features, ongoing G-tube dependence, failure to thrive, and developmental delay seen in other individuals with LMS. His lack of lateral meningoceles expands the phenotype for this condition, as all previously reported individuals with molecularly confirmed LMS had multiple lateral meningoceles before age 8 years with an average age of identification at 4 years.

2.
PLoS One ; 19(3): e0300892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512959

RESUMO

Inflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.


Assuntos
Colite , Eosinofilia , Doenças Inflamatórias Intestinais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Camundongos , Anti-Infecciosos/metabolismo , Eosinofilia/metabolismo , Imunidade Inata , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Retinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA