Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
2.
Curr Opin Ophthalmol ; 34(6): 465-469, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603546

RESUMO

PURPOSE OF REVIEW: Opsoclonus and ocular flutter are saccadic intrusions characterized by spontaneous, back-to-back, fast eye movements (saccades) that oscillate about the midline of central visual fixation without intervening inter-saccadic intervals. When this type of movement occurs exclusively in the horizontal plane, it is called ocular flutter. When it occurs in multiple planes (i.e. horizontal, vertical, and torsional) it is called opsoclonus. The most common etiologic categories are parainfectious and paraneoplastic diseases. Less common are toxic-metabolic, traumatic, or idiopathic origins. The mechanism of these movements relates to dysfunction of brainstem and cerebellar machinery involved in the generation of saccades. In this review, we discuss the characteristics of opsoclonus and ocular flutter, describe approaches to clinical evaluation and management of the patient with opsoclonus and ocular flutter, and review approaches to therapeutic intervention. RECENT FINDINGS: Recent publications demonstrated eye position-dependent opsoclonus present only in left gaze, which may be related to dysfunction of frontal eye fields or structures in the cerebellar vermis. SUMMARY: Opsoclonus and ocular flutter originate from a broad array of neuropathologies and have value from both a neuroanatomic and etiologic perspective.


Assuntos
Transtornos da Motilidade Ocular , Humanos , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/terapia , Movimentos Oculares , Movimentos Sacádicos
3.
Brain Sci ; 13(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37508961

RESUMO

Wolfram syndrome is a neurodegenerative disorder caused by pathogenic variants in the genes WFS1 or CISD2. Clinically, the classic phenotype is composed of optic atrophy, diabetes mellitus type 1, diabetes insipidus, and deafness. Wolfram syndrome, however, is phenotypically heterogenous with variable clinical manifestations and age of onset. We describe four cases of genetically confirmed Wolfram syndrome with variable presentations, including acute-on-chronic vision loss, dyschromatopsia, and tonic pupils. All patients had optic atrophy, only three had diabetes, and none exhibited the classic Wolfram phenotype. MRI revealed a varying degree of the classical features associated with the syndrome, including optic nerve, cerebellar, and brainstem atrophy. The cohort's genotype and presentation supported the reported phenotype-genotype correlations for Wolfram, where missense variants lead to milder, later-onset presentation of the Wolfram syndrome spectrum. When early onset optic atrophy and/or diabetes mellitus are present in a patient, a diagnosis of Wolfram syndrome should be considered, as early diagnosis is crucial for the appropriate referrals and management of the associated conditions. Nevertheless, the condition should also be considered in otherwise unexplained, later-onset optic atrophy, given the phenotypic spectrum.

4.
J Neurol Sci ; 442: 120436, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183516

RESUMO

Saccadic slowing as a component of supranuclear saccadic gaze palsy is an important diagnostic sign in multiple neurologic conditions, including degenerative, inflammatory, genetic, or ischemic lesions affecting brainstem structures responsible for saccadic generation. Little attention has been given to the accuracy with which clinicians correctly identify saccadic slowing. We compared clinician (n = 19) judgements of horizontal and vertical saccade speed on video recordings of saccades (from 9 patients with slow saccades, 3 healthy controls) to objective saccade peak velocity measurements from infrared oculographic recordings. Clinician groups included neurology residents, general neurologists, and fellowship-trained neuro-ophthalmologists. Saccades with normal peak velocities on infrared recordings were correctly identified as normal in 57% (91/171; 171 = 9 videos × 19 clinicians) of clinician decisions; saccades determined to be slow on infrared recordings were correctly identified as slow in 84% (224/266; 266 = 14 videos × 19 clinicians) of clinician decisions. Vertical saccades were correctly identified as slow more often than horizontal saccades (94% versus 74% of decisions). No significant differences were identified between clinician training levels. Reliable differentiation between normal and slow saccades is clinically challenging; clinical performance is most accurate for detection of vertical saccade slowing. Quantitative analysis of saccade peak velocities enhances accurate detection and is likely to be especially useful for detection of mild saccadic slowing.


Assuntos
Transtornos da Motilidade Ocular , Movimentos Sacádicos , Humanos , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Tronco Encefálico
5.
J Neurol Sci ; 442: 120445, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208585

RESUMO

Although visual symptoms are common following concussion, quantitative measures of visual function are missing from concussion evaluation protocols on the athletic sideline. For the past half century, rapid automatized naming (RAN) tasks have demonstrated promise as quantitative neuro-visual assessment tools in the setting of head trauma and other disorders but have been previously limited in accessibility and scalability. The Mobile Interactive Cognitive Kit (MICK) App is a digital RAN test that can be downloaded on most mobile devices and can therefore provide a quantitative measure of visual function anywhere, including the athletic sideline. This investigation examined the feasibility of MICK App administration in a cohort of Division 1 college football players. Participants (n = 82) from a National Collegiate Athletic Association (NCAA) Division 1 football team underwent baseline testing on the MICK app. Total completion times of RAN tests on the MICK app were recorded; magnitudes of best time scores and between-trial learning effects were determined by paired t-test. Consistent with most timed performance measures, there were significant learning effects between the two baseline trials for both RAN tasks on the MICK app: Mobile Universal Lexicon Evaluation System (MULES) (p < 0.001, paired t-test, mean improvement 13.3 s) and the Staggered Uneven Number (SUN) (p < 0.001, mean improvement 3.3 s). This study demonstrated that the MICK App can be feasibly administered in the setting of pre-season baseline testing in a Division I environment. These data provide a foundation for post-injury sideline testing that will include comparison to baseline in the setting of concussion.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Aplicativos Móveis , Humanos , Futebol Americano/lesões , Estudos de Viabilidade , Concussão Encefálica/diagnóstico , Receptores Proteína Tirosina Quinases , Cognição , Traumatismos em Atletas/complicações , Traumatismos em Atletas/diagnóstico , Testes Neuropsicológicos
6.
J Neuroophthalmol ; 42(2): 278-281, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594157

RESUMO

ABSTRACT: A 62-year-old man presented with headache, fever, and malaise. He was diagnosed with Anaplasma phagocytophilum, confirmed by serum polymerase chain reaction, and started on oral doxycycline. After 5 days of treatment, the patient began to experience gait imbalance with frequent falls, as well as myoclonus, and confusion. Examination was notable for opsoclonus-myoclonus-ataxia (OMA) and hypometric saccades. Cerebrospinal fluid (CSF) autoimmune encephalitis panel demonstrated a markedly elevated neuronal intermediate filament (NIF) immunoglobulin G antibody titer of 1:16, with positive neurofilament light- and heavy-chain antibodies. These antibodies were suspected to have been triggered by the Anaplasma infection. Repeat CSF examination 8 days later still showed a positive immunofluorescence assay for NIF antibodies, but the CSF titer was now less than 1:2. Body computed tomography imaging was unrevealing for an underlying cancer. Our patient illustrates a postinfectious mechanism for OMA and saccadic hypometria after Anaplasma infection.


Assuntos
Anaplasmose , Síndrome de Opsoclonia-Mioclonia , Animais , Ataxia , Humanos , Imunoglobulina G , Filamentos Intermediários , Masculino , Pessoa de Meia-Idade
8.
J Neurol Sci ; 434: 120150, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038658

RESUMO

OBJECTIVE: Rapid automatized naming (RAN) tasks have been utilized for decades to evaluate neurological conditions. Time scores for the Mobile Universal Lexicon Evaluation System (MULES, rapid picture naming) and Staggered Uneven Number (SUN, rapid number naming) are prolonged (worse) with concussion, mild cognitive impairment, multiple sclerosis and Parkinson's disease. The purpose of this investigation was to compare paper/pencil versions of MULES and SUN with a new digitized format, the MICK app. METHODS: Participants (healthy office-based volunteers, professional women's hockey players), completed two trials of the MULES and SUN tests on both platforms (tablet, paper/pencil). The order of presentation of the testing platforms was randomized. Between-platform variability was calculated using the two-way random-effects intraclass correlation coefficient (ICC). RESULTS: Among 59 participants (median age 32, range 22-83), no significant differences were observed for comparisons of mean best scores for the paper/pencil versus MICK app platforms, counterbalanced for order of administration (P = 0.45 for MULES, P = 0.50 for SUN, linear regression). ICCs for agreement between the MICK and paper/pencil tests were 0.92 (95% CI 0.86, 0.95) for MULES and 0.94 (95% CI 0.89, 0.96) for SUN, representing excellent levels of agreement. Inter-platform differences did not vary systematically across the range of average best time score for either test. CONCLUSION: The MICK app for digital administration of MULES and SUN demonstrates excellent agreement of time scores with paper/pencil testing. The computerized app allows for greater accessibility and scalability in neurological diseases, inclusive of remote monitoring. Sideline testing for sports-related concussion may also benefit from this technology.


Assuntos
Concussão Encefálica , Aplicativos Móveis , Nomes , Doença de Parkinson , Adulto , Cognição , Feminino , Humanos
9.
J Neuroophthalmol ; 42(1): 79-87, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029274

RESUMO

BACKGROUND: Visual tests in Alzheimer disease (AD) have been examined over the last several decades to identify a sensitive and noninvasive marker of the disease. Rapid automatized naming (RAN) tasks have shown promise for detecting prodromal AD or mild cognitive impairment (MCI). The purpose of this investigation was to determine the capacity for new rapid image and number naming tests and other measures of visual pathway structure and function to distinguish individuals with MCI due to AD from those with normal aging and cognition. The relation of these tests to vision-specific quality of life scores was also examined in this pilot study. METHODS: Participants with MCI due to AD and controls from well-characterized NYU research and clinical cohorts performed high and low-contrast letter acuity (LCLA) testing, as well as RAN using the Mobile Universal Lexicon Evaluation System (MULES) and Staggered Uneven Number test, and vision-specific quality of life scales, including the 25-Item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement. Individuals also underwent optical coherence tomography scans to assess peripapillary retinal nerve fiber layer and ganglion cell/inner plexiform layer thicknesses. Hippocampal atrophy on brain MRI was also determined from the participants' Alzheimer disease research center or clinical data. RESULTS: Participants with MCI (n = 14) had worse binocular LCLA at 1.25% contrast compared with controls (P = 0.009) and longer (worse) MULES test times (P = 0.006) with more errors in naming images (P = 0.009) compared with controls (n = 16). These were the only significantly different visual tests between groups. MULES test times (area under the receiver operating characteristic curve [AUC] = 0.79), MULES errors (AUC = 0.78), and binocular 1.25% LCLA (AUC = 0.78) showed good diagnostic accuracy for distinguishing MCI from controls. A combination of the MULES score and 1.25% LCLA demonstrated the greatest capacity to distinguish (AUC = 0.87). These visual measures were better predictors of MCI vs control status than the presence of hippocampal atrophy on brain MRI in this cohort. A greater number of MULES test errors (rs = -0.50, P = 0.005) and worse 1.25% LCLA scores (rs = 0.39, P = 0.03) were associated with lower (worse) NEI-VFQ-25 scores. CONCLUSIONS: Rapid image naming (MULES) and LCLA are able to distinguish MCI due to AD from normal aging and reflect vision-specific quality of life. Larger studies will determine how these easily administered tests may identify patients at risk for AD and serve as measures in disease-modifying therapy clinical trials.


Assuntos
Doença de Alzheimer , Qualidade de Vida , Doença de Alzheimer/diagnóstico , Atrofia , Humanos , Projetos Piloto , Testes Visuais
10.
J Neuroophthalmol ; 42(1): e448-e449, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270515

RESUMO

ABSTRACT: A 78-year-old man was evaluated for altered mentation in the setting of significant uremia. On examination, he was found to be encephalopathic with generalized myoclonus and spontaneous opsoclonus. He had no known risk factors for the development of opsoclonus and upon undergoing hemodialysis, experienced near resolution of his eye movement abnormalities, thus highlighting a possible link between the uremic state and opsoclonus.


Assuntos
Transtornos da Motilidade Ocular , Uremia , Idoso , Feminino , Humanos , Masculino , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Diálise Renal/efeitos adversos , Uremia/complicações , Uremia/terapia
11.
Radiology ; 302(2): 419-424, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783593

RESUMO

Background There are multiple tools available to visualize the retinal and choroidal vasculature of the posterior globe. However, there are currently no reliable in vivo imaging techniques that can visualize the entire retrobulbar course of the retinal and ciliary vessels. Purpose To identify and characterize the central retinal artery (CRA) using cone-beam CT (CBCT) images obtained as part of diagnostic cerebral angiography. Materials and Methods In this retrospective study, patients with catheter DSA performed between October 2019 and October 2020 were included if CBCT angiography included the orbit in the field of view. The CBCT angiography data sets were postprocessed with a small field-of-view volume centered in the posterior globe to a maximum resolution of 0.2 mm. The following were evaluated: CRA origin, CRA course, CRA point of penetration into the optic nerve sheath, bifurcation of the CRA at the papilla, visualization of anatomic variants, and visualization of the central retinal vein. Descriptive statistical analysis was performed. Results Twenty-one patients with 24 visualized orbits were included in the analysis (mean age, 55 years ± 15; 14 women). Indications for angiography were as follows: diagnostic angiography (n = 8), aneurysm treatment (n = 6), or other (n = 7). The CRA was identified in all orbits; the origin, course, point of penetration of the CRA into the optic nerve sheath, and termination in the papilla were visualized in all orbits. The average length of the intraneural segment was 10.6 mm (range, 7-18 mm). The central retinal vein was identified in six of 24 orbits. Conclusion Cone-beam CT, performed during diagnostic angiography, consistently demonstrated the in vivo central retinal artery, demonstrating excellent potential for multiple diagnostic and therapeutic applications. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Angiografia Cerebral , Angiografia por Tomografia Computadorizada , Tomografia Computadorizada de Feixe Cônico , Artéria Retiniana/diagnóstico por imagem , Angiografia Digital , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Brain Sci ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34942873

RESUMO

(1) Background: The King-Devick (KD) rapid number naming test is sensitive for concussion diagnosis, with increased test time from baseline as the outcome measure. Eye tracking during KD performance in concussed individuals shows an association between inter-saccadic interval (ISI) (the time between saccades) prolongation and prolonged testing time. This pilot study retrospectively assesses the relation between ISI prolongation during KD testing and cognitive performance in persistently-symptomatic individuals post-concussion. (2) Results: Fourteen participants (median age 34 years; 6 women) with prior neuropsychological assessment and KD testing with eye tracking were included. KD test times (72.6 ± 20.7 s) and median ISI (379.1 ± 199.1 msec) were prolonged compared to published normative values. Greater ISI prolongation was associated with lower scores for processing speed (WAIS-IV Coding, r = 0.72, p = 0.0017), attention/working memory (Trails Making A, r = -0.65, p = 0.006) (Digit Span Forward, r = 0.57, p = -0.017) (Digit Span Backward, r= -0.55, p = 0.021) (Digit Span Total, r = -0.74, p = 0.001), and executive function (Stroop Color Word Interference, r = -0.8, p = 0.0003). (3) Conclusions: This pilot study provides preliminary evidence suggesting that cognitive dysfunction may be associated with prolonged ISI and KD test times in concussion.

13.
J Neuroophthalmol ; 41(3): 356-361, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415269

RESUMO

BACKGROUND: The novel coronavirus 2019 (COVID-19) pandemic has transformed health care. With the need to limit COVID-19 exposures, telemedicine has become an increasingly important format for clinical care. Compared with other fields, neuro-ophthalmology faces unique challenges, given its dependence on physical examination signs that are difficult to elicit outside the office setting. As such, it is imperative to understand both patient and provider experiences to continue to adapt the technology and tailor its application. The purpose of this study is to analyze both neuro-ophthalmology physician and patient satisfaction with virtual health visits during the time of the COVID-19 pandemic. METHODS: Across three institutions (NYU Langone Health, Indiana University Health, and Columbia University Medical Center), telemedicine surveys were administered to 159 patients. Neuro-ophthalmologists completed 157 surveys; each of these were linked to a single patient visit. Patient surveys consisted of 5 questions regarding visit preparation, satisfaction, challenges, and comfort. The physician survey included 4 questions that focused on ability to gather specific clinical information by history and examination. RESULTS: Among 159 patients, 104 (65.4%) reported that they were satisfied with the visit, and 149 (93.7%) indicated that they were comfortable asking questions. Sixty-eight (73.9%) patients found the instructions provided before the visit easy to understand. Potential areas for improvement noted by patients included more detailed preparation instructions and better technology (phone positioning, Internet connection, and software). More than 87% (137/157) of neuro-ophthalmologists surveyed reported having performed an examination that provided enough information for medical decision-making. Some areas of the neuro-ophthalmologic examination were reported to be easy to conduct (range of eye movements, visual acuity, Amsler grids, Ishihara color plates, and pupillary examination). Other components were more difficult (saccades, red desaturation, visual fields, convergence, oscillations, ocular alignment, and smooth pursuit); some were especially challenging (vestibulo-ocular reflex [VOR], VOR suppression, and optokinetic nystagmus). Clinicians noted that virtual health visits were limited by patient preparation, inability to perform certain parts of the examination (funduscopy and pupils), and technological issues. CONCLUSIONS: Among virtual neuro-ophthalmology visits evaluated, most offer patients with appointments that satisfy their needs. Most physicians in this cohort obtained adequate clinical information for decision-making. Even better technology and instructions may help improve aspects of virtual health visits.


Assuntos
COVID-19/epidemiologia , Oftalmopatias/diagnóstico , Oftalmologia/métodos , Pandemias , Médicos/estatística & dados numéricos , Inquéritos e Questionários , Telemedicina/métodos , Comorbidade , Oftalmopatias/epidemiologia , Humanos , Estudos Retrospectivos
14.
J Comput Neurosci ; 49(3): 283-293, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839988

RESUMO

Voluntary rapid eye movements (saccades) redirect the fovea toward objects of visual interest. The saccadic system can be considered as a dual-mode system: in one mode the eye is fixating, in the other it is making a saccade. In this review, we consider two examples of dysfunctional saccades, interrupted saccades in late-onset Tay-Sachs disease and gaze-position dependent opsoclonus after concussion, which fail to properly shift between fixation and saccade modes. Insights and benefits gained from bi-directional collaborative exchange between clinical and basic scientists are emphasized. In the case of interrupted saccades, existing mathematical models were sufficiently detailed to provide support for the cause of interrupted saccades. In the case of gaze-position dependent opsoclonus, existing models could not explain the behavior, but further development provided a reasonable hypothesis for the mechanism underlying the behavior. Collaboration between clinical and basic science is a rich source of progress for developing biologically plausible models and understanding neurological disease. Approaching a clinical problem with a specific hypothesis (model) in mind often prompts new experimental tests and provides insights into basic mechanisms.


Assuntos
Modelos Neurológicos , Movimentos Sacádicos
15.
Hum Mutat ; 42(6): 685-693, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783914

RESUMO

De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.


Assuntos
Ataxia/genética , Hipotonia Muscular/genética , Fator de Transcrição Brn-3A/genética , Tremor/genética , Adulto , Ataxia/complicações , Ataxia/diagnóstico , Ataxia/patologia , Criança , Pré-Escolar , Feminino , Haploinsuficiência , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico , Mutação de Sentido Incorreto , Estudos Retrospectivos , Síndrome , Tremor/complicações , Tremor/diagnóstico , Estados Unidos , Sequenciamento do Exoma , Adulto Jovem
16.
eNeurologicalSci ; 22: 100323, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604461

RESUMO

OBJECTIVE: The Mobile Universal Lexicon Evaluation System (MULES) is a rapid picture naming task that captures extensive brain networks involving neurocognitive, afferent/efferent visual, and language pathways. Many of the factors captured by MULES may be abnormal in sleep-deprived residents. This study investigates the effect of sleep deprivation in post-call residents on MULES performance. METHODS: MULES, consisting of 54 color photographs, was administered to a cohort of neurology residents taking 24-hour in-hospital call (n = 18) and a group of similar-aged controls not taking call (n = 18). Differences in times between baseline and follow-up MULES scores were compared between the two groups. RESULTS: MULES time change in call residents was significantly worse (slower) from baseline (mean 1.2 s slower) compared to non-call controls (mean 11.2 s faster) (P < 0.001, Wilcoxon rank sum test). The change in MULES time from baseline was significantly correlated to the change in subjective level of sleepiness for call residents and to the amount of sleep obtained in the 24 h prior to follow-up testing for the entire cohort. For call residents, the duration of sleep obtained during call did not significantly correlate with change in MULES scores. There was no significant correlation between MULES change and sleep quality questionnaire score for the entire cohort. CONCLUSION: The MULES is a novel test for effects of sleep deprivation on neurocognition and vision pathways. Sleep deprivation significantly worsens MULES performance. Subjective sleepiness may also affect MULES performance. MULES may serve as a useful performance assessment tool for sleep deprivation in residents.

17.
Brain Inj ; 35(4): 426-435, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33529094

RESUMO

Background: Sideline diagnostic tests for concussion are vulnerable to volitional poor performance ("sandbagging") on baseline assessments, motivated by desire to subvert concussion detection and potential removal from play. We investigated eye movements during sandbagging versus best effort on the King-Devick (KD) test, a rapid automatized naming (RAN) task.Methods: Participants performed KD testing during oculography following instructions to sandbag or give best effort.Results: Twenty healthy participants without concussion history were included (mean age 27 ± 8 years). Sandbagging resulted in longer test times (89.6 ± 39.2 s vs 48.2 ± 8.5 s, p < .001), longer inter-saccadic intervals (459.5 ± 125.4 ms vs 311.2 ± 79.1 ms, p < .001) and greater numbers of saccades (171.4 ± 47 vs 138 ± 24.2, p < .001) and reverse saccades (wrong direction for reading) (21.2% vs 11.3%, p < .001). Sandbagging was detectable using a logistic model with KD times as the only predictor, though more robustly detectable using eye movement metrics.Conclusions: KD sandbagging results in eye movement differences that are detectable by eye movement recordings and suggest an invalid test score. Objective eye movement recording during the KD test shows promise for distinguishing between best effort and post-injury performance, as well as for identifying sandbagging red flags.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Adulto , Concussão Encefálica/diagnóstico , Movimentos Oculares , Humanos , Testes Neuropsicológicos , Movimentos Sacádicos , Adulto Jovem
18.
J Neuroophthalmol ; 41(1): 10-12, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33587534

RESUMO

ABSTRACT: A collection of instructional videos that illustrate a step by step approach to tele-neuro-ophthalmology and neuro-otology visits. These videos provide instruction for patient preparation for their video visit, patient and provider interface with an electronic medical record associated video platform, digital applications to assist with vision testing, and practical advice for detailed remote neuro-ophthalmologic and neuro-otologic examinations.


Assuntos
Recursos Audiovisuais/provisão & distribuição , Atenção à Saúde/organização & administração , Neuro-Otologia/organização & administração , Oftalmologia/organização & administração , Telemedicina/métodos , Telemedicina/organização & administração , Técnicas de Diagnóstico Oftalmológico , Humanos , Materiais de Ensino/provisão & distribuição
19.
Ann Neurol ; 89(4): 823-827, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386648

RESUMO

Fatal familial insomnia (FFI) is a rare inherited prion disease characterized by sleep, autonomic, and motor disturbances. Neuro-ophthalmological abnormalities have been reported at the onset of disease, although not further characterized. We analyzed video recordings of eye movements of 6 patients with FFI from 3 unrelated kindreds, seen within 6 months from the onset of illness. Excessive saccadic intrusions were the most prominent findings. In patients with severe insomnia, striking saccadic intrusions are an early diagnostic clue for FFI. The fact that the thalamus is the first structure affected in FFI also suggests its role in the control of steady fixation. ANN NEUROL 2021;89:823-827.


Assuntos
Técnicas de Diagnóstico Oftalmológico , Insônia Familiar Fatal/diagnóstico , Exame Neurológico , Adulto , Idade de Início , Eletroculografia , Movimentos Oculares , Feminino , Humanos , Insônia Familiar Fatal/genética , Insônia Familiar Fatal/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas Priônicas/genética , Estudos Retrospectivos , Movimentos Sacádicos , Tálamo/fisiopatologia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA