Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Am J Transplant ; 7(5): 1071-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17359505

RESUMO

Tertiary lymphoid tissues are lymph node-like cell aggregates that arise at sites of chronic inflammation. They have been observed in transplanted organs undergoing chronic rejection, but it is not known whether they contribute to the rejection process by supporting local activation of naïve lymphocytes. To answer this question, we established a murine transplantation model in which the donor skin contains tertiary lymphoid tissues due to transgenic expression of lymphotoxin-alpha(RIP-LT alpha), whereas the recipient lacks all secondary lymphoid organs and does not mount primary alloimmune responses. We demonstrate in this model that RIP-LT alpha allografts that harbor tertiary lymphoid tissues are rejected, while wild-type allografts that lack tertiary lymphoid tissues are accepted. Wild-type allografts transplanted at the same time as RIP-LT alpha skin or 60 days later were also rejected, suggesting that tertiary lymphoid tissues, similar to secondary lymphoid organs, generate both effector and memory immune responses. Consistent with this observation, naive T cells transferred to RIP-LT alpha skin allograft but not syngeneic graft recipients proliferated and differentiated into effector and memory T cells. These findings provide direct evidence that tertiary lymphoid structures perpetuate the rejection process by supporting naïve T-cell activation.


Assuntos
Rejeição de Enxerto/imunologia , Ativação Linfocitária/imunologia , Tecido Linfoide/imunologia , Transplante de Pele/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Rejeição de Enxerto/patologia , Tecido Linfoide/patologia , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Transplante de Pele/patologia , Linfócitos T/patologia , Transplante Homólogo
2.
Immunity ; 15(2): 237-47, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11520459

RESUMO

Lymphocytes home to lymph nodes, using L-selectin to bind specific ligands on high endothelial venules (HEV). In vitro studies implicate GlcNAc-6-sulfate as an essential posttranslational modification for ligand activity. Here, we show that genetic deletion of HEC-GlcNAc6ST, a sulfotransferase that is highly restricted to HEV, results in the loss of the binding of recombinant L-selectin to the luminal aspect of HEV, elimination of lymphocyte binding in vitro, and markedly reduced in vivo homing. Reactivity with MECA 79, an adhesion-blocking mAb that stains HEV in lymph nodes and vessels in chronic inflammatory sites, is also lost from the luminal aspects of HEV. These results establish a critical role for HEC-GlcNAc6ST in lymphocyte trafficking and suggest it as an important therapeutic target.


Assuntos
Quimiotaxia de Leucócito , Selectina L/metabolismo , Linfonodos/citologia , Sistema Linfático/enzimologia , Linfócitos/citologia , Sulfotransferases/metabolismo , Animais , Adesão Celular , Lectinas/metabolismo , Ligantes , Camundongos , Camundongos Mutantes , Sulfotransferases/genética
3.
Nature ; 409(6816): 97-101, 2001 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11343121

RESUMO

T-lymphocyte activation and immune function are regulated by co-stimulatory molecules. CD28, a receptor for B7 gene products, has a chief role in initiating T-cell immune responses. CTLA4, which binds B7 with a higher affinity, is induced after T-cell activation and is involved in downregulating T-cell responses. The inducible co-stimulatory molecule (ICOS), a third member of the CD28/CTLA4 family, is expressed on activated T cells. Its ligand B7H/B7RP-1 is expressed on B cells and in non-immune tissues after injection of lipopolysaccharide into animals. To understand the role of ICOS in T-cell activation and function, we generated and analysed ICOS-deficient mice. Here we show that T-cell activation and proliferation are defective in the absence of ICOS. In addition, ICOS -/- T cells fail to produce interleukin-4 when differentiated in vitro or when primed in vivo. ICOS is required for humoral immune responses after immunization with several antigens. ICOS-/- mice showed greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, indicating that ICOS has a protective role in inflammatory autoimmune diseases.


Assuntos
Antígenos de Diferenciação de Linfócitos T/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Diferenciação Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Marcação de Genes , Hemocianinas/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-13/biossíntese , Interleucina-4/biossíntese , Linfonodos/patologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito , Linfócitos T/citologia
4.
J Immunol ; 166(8): 5168-75, 2001 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11290800

RESUMO

During experimental autoimmune encephalomyelitis (EAE), autoreactive Th1 T cells invade the CNS. Before performing their effector functions in the target organ, T cells must recognize Ag presented by CNS APCs. Here, we investigate the nature and activity of the cells that present Ag within the CNS during myelin oligodendrocyte glycoprotein-induced EAE, with the goal of understanding their role in regulating inflammation. Both infiltrating macrophages (Mac-1(+)CD45(high)) and resident microglia (Mac-1(+)CD45(int)) expressed MHC-II, B7-1, and B7-2. Macrophages and microglia presented exogenous and endogenous CNS Ags to T cell lines and CNS T cells, resulting in IFN-gamma production. In contrast, Mac-1(-) cells were inefficient APCs during EAE. Late in disease, after mice had partially recovered from clinical signs of disease, there was a reduction in Ag-presenting capability that correlated with decreased MHC-II and B7-1 expression. Interestingly, although CNS APCs induced T cell cytokine production, they did not induce proliferation of either T cell lines or CNS T cells. This was attributable to production by CNS cells (mainly by macrophages) of NO. T cell proliferation was restored with an NO inhibitor, or if the APCs were obtained from inducible NO synthase-deficient mice. Thus, CNS APCs, though essential for the initiation of disease, also play a down-regulatory role. The mechanisms by which CNS APCs limit the expansion of autoreactive T cells in the target organ include their production of NO, which inhibits T cell proliferation, and their decline in Ag presentation late in disease.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Encéfalo/imunologia , Movimento Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Medula Espinal/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/metabolismo , Antígeno B7-1/biossíntese , Encéfalo/patologia , Linhagem Celular , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Inibidores do Crescimento/fisiologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe II/biossíntese , Ativação Linfocitária , Substâncias Macromoleculares , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/biossíntese , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Óxido Nítrico/biossíntese , Óxido Nítrico/fisiologia , Medula Espinal/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
5.
Eur J Immunol ; 31(4): 1278-87, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11298355

RESUMO

Systemic hyporesponsiveness occurs following oral administration of antigen (oral tolerance) and involves the uptake and processing of antigen by the gut-associated lymphoid tissue (GALT), which includes Peyer's patches (PP) lamina propria lymphocytes and mesenteric lymph nodes (MLN). Animals with targeted mutations of genes in the tumor necrosis factor (TNF) family have differential defects in the development of peripheral lymphoid organs including PP and MLN, and provide a unique opportunity to investigate the role of GALT structures in the induction of oral tolerance. Oral tolerance could not be induced in TNF/lymphotoxin (LT) alpha-/- mice, which are devoid of both PP and MLN, although these animals could be tolerized by intraperitoneal administration of antigen, demonstrating the requirement for GALT for oral tolerance induction. LTbeta-/- mice and LTalpha/LTbeta+/- animals do not have PP but could be orally tolerized, as measured by IFN-gamma production and delayed-type hypersensitivity responses by administration of both low or high doses of ovalbumin. To further investigate the requirement for PP, we tested the progeny of LTbeta-receptor-IgG-fusion-protein (LTbetaRigG)-treated mice, which do not form PP but have an otherwise intact immune system. Although these animals had decreased fecal IgA production, they could be orally tolerized. Our results demonstrate that PP are not an absolute requirement for the induction of either high- or low-dose oral tolerance, although oral tolerance could not be induced in animals devoid of both PP and MLN.


Assuntos
Tolerância Imunológica/imunologia , Imunidade nas Mucosas/imunologia , Nódulos Linfáticos Agregados/anormalidades , Nódulos Linfáticos Agregados/imunologia , Administração Oral , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Relação Dose-Resposta Imunológica , Ensaio de Imunoadsorção Enzimática , Fezes/química , Deleção de Genes , Hipersensibilidade Tardia/imunologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Imunoglobulina A/imunologia , Interferon gama/biossíntese , Interferon gama/metabolismo , Interleucina-2/metabolismo , Linfonodos/anormalidades , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfotoxina-alfa/antagonistas & inibidores , Linfotoxina-alfa/genética , Linfotoxina-alfa/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
6.
J Neuroimmunol ; 113(1): 109-18, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11137582

RESUMO

A complete prevention of clinical experimental autoimmune myasthenia gravis (EAMG) was observed in lymphotoxin (LT)-alpha deficient (LT-alpha(-/-)) mice compared to LT-alpha(+/+) mice when immunized with acetylcholine receptor. However, only a partial prevention of clinical EAMG incidence was observed in LT-beta(-/-) mice compared to LT-beta(+/+) mice. LT-alpha(-/-)and LT-beta(-/-) mice had lower mean titers of total IgG, IgG(1), IgG(2a) and IgG(2b) and higher or equal mean titers of IgM anti-AChR antibodies compared to controls. Therefore, LT-alpha(-/-)and LT-beta(-/-) AChR immunized mice are capable of mounting a primary (IgM) humoral immune response to AChR, but are less capable of switching to the pathogenic anti-AChR IgG isotypes. LT could play a significant role in the pathogenesis of myasthenia gravis.


Assuntos
Linfotoxina-alfa/genética , Linfotoxina-alfa/imunologia , Miastenia Gravis Autoimune Experimental/imunologia , Receptores Colinérgicos/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Autoanticorpos/sangue , Antígeno B7-2 , Expressão Gênica/imunologia , Epitopos Imunodominantes/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Fator de Necrose Tumoral/imunologia , Baço/citologia , Baço/imunologia
7.
Am J Pathol ; 156(4): 1133-8, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10751336

RESUMO

Secondary lymphoid tissue chemokine (SLC) and B lymphocyte chemoattractant (BLC) are homing chemokines that have been implicated in the trafficking of lymphocytes and dendritic cells in lymphoid organs. Lymphotoxin-alpha (LTalpha), a cytokine crucial for development of lymphoid organs, is important for expression of SLC and BLC in secondary lymphoid organs during development. Here we report that transgenic expression of LTalpha induces inflammation and ectopic expression of SLC and BLC in the adult animal. LTbeta was not necessary for induction of BLC and SLC in inflamed tissues, whereas, in contrast, tumor necrosis factor receptor-1 was found to be important for the LTalpha-mediated induction of these chemokines. The ectopic expression of LTalpha is associated with a chronic inflammation that closely resembles organized lymphoid tissue and this lymphoid neogenesis can also be seen in several chronic inflammatory diseases, including in the pancreas of the prediabetic nonobese diabetic (NOD) mouse. Expression of SLC was also observed in the pancreas of prediabetic NOD mice. This study implicates BLC and SLC in chronic inflammation and presents further evidence that LTalpha orchestrates lymphoid organogenesis both during development and in inflammatory processes.


Assuntos
Quimiocinas CC/metabolismo , Quimiocinas CXC/metabolismo , Inflamação/metabolismo , Animais , Antígenos CD/fisiologia , Quimiocina CCL21 , Quimiocina CXCL13 , Quimiocinas CC/genética , Quimiocinas CXC/genética , Doença Crônica , Feminino , Linfotoxina-alfa/genética , Linfotoxina-alfa/fisiologia , Linfotoxina-beta , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos NOD/genética , Camundongos Transgênicos/genética , Pâncreas/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Isoformas de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral
8.
J Immunol ; 164(1): 419-26, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10605038

RESUMO

Experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 (H-2b) mice is characterized by early (day 12) acute paralysis, followed by a sustained chronic clinical course that gradually stabilizes. Extensive inflammation and demyelination coincide with clinical signs of disease. To identify the mechanisms of these processes, individual proinflammatory and anti-inflammatory cytokines and chemokines were studied. Sensitive single-cell assays were utilized to determine the cellular origin and kinetics of cytokine production in the CNS. Immunization with MOG35-55 peptide resulted in priming of both Th1 (lymphotoxin, IFN-gamma, and TNF-alpha) and Th2 (IL-4) cells in the spleen. However, only Th1 cells were apparent in the CNS. CD4 T cells that produced IFN-gamma or TNF-alpha were present in the CNS by day 7 after immunization with MOG35-55, peaked at day 20, and then waned. TNF-alpha was also produced in the CNS by Mac-1+ cells. On days 7 and 10 after immunization, the TNF-alpha-producing Mac1+ cells were predominantly microglia. By day 14, a switch occurred in that the Mac1+ TNF-alpha-producing cells had the phenotype of infiltrating macrophages. RANTES, IFN-inducible protein 10 (IP-10), and monocyte chemotactic protein 1 chemokine mRNA were detected in the CNS by day 8 after immunization. The early presence of monocyte chemotactic protein 1 (MCP-1) in the CNS provides a mechanism for the recruitment of macrophages. These data implicate TNF-alpha production by a continuum of T cells, microglia, and macrophages at various times during the course of disease. The importance of Th1 cytokines is highlighted, with little evidence for a role of Th2 cytokines.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/imunologia , Glicoproteína Associada a Mielina/imunologia , Sequência de Aminoácidos , Animais , Sistema Nervoso Central/citologia , Quimiocinas/biossíntese , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Injeções Subcutâneas , Interferon gama/biossíntese , Interferon gama/metabolismo , Cinética , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/administração & dosagem , Glicoproteína Mielina-Oligodendrócito , Baço/citologia , Baço/imunologia , Baço/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
9.
Immunol Res ; 19(2-3): 119-25, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10493167

RESUMO

Lymphoid organ development and inflammation have previously been considered as distinct mechanistically and functionally. In recent years, it has been realized that these phenomena have much in common. This insight has been gained from the recognition that cytokines of the lymphotoxin (LT)/tumor necrosis factor (TNF) family are involved in both processes. The members of the family, LT-alpha, LT-beta, and TNF-alpha, and their multiple receptors participate combinatorially in lymphoid organ development and chronic inflammation. When inflammation that arises in microbial infection or autoimmune disease becomes chronic, it can take on the appearance of organized lymphoid tissue and has been called a tertiary lymphoid organ. Data with transgenic and knockout mice suggest that the process is cytokine-mediated and could be called "lymphoid neo-organogenesis." LT as LT-alpha3 and LT-alpha1beta2 plays a key role in these processes. Data obtained in vitro in an endothelial cell line and in vivo in transgenic and knockout mice indicate that LT influences these events through induction of adhesion molecules such as E-selectin adhesion molecule (ELAM), vascular cell adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), mucosal addressin cellular adhesion molecule (MAdCAM), and peripheral node addressin (PNAd), and chemokines.


Assuntos
Linfonodos/embriologia , Linfonodos/imunologia , Linfotoxina-alfa/fisiologia , Animais , Autoimunidade , Desenvolvimento Embrionário e Fetal , Humanos , Inflamação , Camundongos , Ratos , Fator de Necrose Tumoral alfa/fisiologia
10.
J Immunol ; 162(10): 5965-72, 1999 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10229834

RESUMO

Lymphotoxin (LT) is a member of the proinflammatory TNF family of cytokines that plays a critical role in the development of lymphoid tissue. It has previously been reported that the presence of the LTalpha transgene under the control of the rat insulin promoter results in inflammation at the sites of transgene expression. LTalpha transgene expression results in expression of the adhesion molecules VCAM, ICAM, peripheral node addressin (a marker of peripheral lymph nodes), and mucosal addressin cellular adhesion molecule (a marker of mucosal lymphoid tissue, including mesenteric lymph nodes). In this study to determine the mechanisms by which LT promotes inflammation and lymphoid tissue organization, we analyzed the regulation of expression of adhesion molecules and chemokines in LT transgenic mice. The results demonstrate that LTalpha3 induces expression of the adhesion molecules VCAM, ICAM, and mucosal addressin cellular adhesion molecule as well as the chemokines RANTES, IFN-inducible protein-10, and monocyte chemotactic protein-1, while LTalphabeta is required for the induction of peripheral node addressin that may contribute to the recruitment of L-selectinhigh CD44low naive T cells. These data provide candidate mediators of LT-induced inflammation as well as potential mechanisms by which LTalpha and LTalphabeta may differentially promote the development of mesenteric and peripheral lymph nodes.


Assuntos
Moléculas de Adesão Celular/biossíntese , Quimiocinas/biossíntese , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Linfonodos/imunologia , Linfotoxina-alfa/biossíntese , Animais , Antígenos CD/metabolismo , Antígenos de Superfície/biossíntese , Quimiocina CCL2/biossíntese , Quimiocina CCL5/biossíntese , Quimiocina CXCL10 , Quimiocinas CXC/biossíntese , Doença Crônica , Modelos Animais de Doenças , Ilhotas Pancreáticas/imunologia , Linfotoxina-alfa/genética , Proteínas de Membrana , Mesentério/imunologia , Camundongos , Camundongos Transgênicos , Ratos , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral
11.
Sci China C Life Sci ; 42(1): 8-16, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18726492

RESUMO

Neurofibroma cell lines derived from mice transgenic for HTLV-I LTR tax express high levels of HTLV-I tax mRNA and protein and exhibit a transformed phenotype. A retrovirus vector carrying HTLV-I tax cDNA in reversed transcriptional orientation was stably transfected into the neurofibroma cells. Antisense RNA inhibited expression of the tax gene with a decrease of more than 40% in both tax mRNA and protein. Tax antisense RNA reversed the transformed phenotype as exhibited by dramatic changes in cell morphology and growth characteristics. Expression of several cellular genes which are activated by Tax protein including GM-CSF, IL-6, LT/TNF, c-myc and LIF was down-regulated, while M-CSF and c-src proto-oncogene expressions were up-regulated. Accumulation of beta-actin mRNA was not affected. The changes that occurred in the tax antisense expressing neurofibroma cells could be the consequence of the decreased concentration of Tax protein. These results also indicate that HTLV-I Tax protein is crucial for maintaining the transformed cell morphology, growth and proliferation of murine neurofibroma cells and suggest that deregulation of endogenous cellular genes by Tax protein is the mechanism through which neurofibromas occur in tax mice.

12.
J Immunol ; 161(12): 6853-60, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9862717

RESUMO

Lymphotoxin (LT) plays an important role in inflammation and lymphoid organ development, though the mechanisms by which it promotes these processes are poorly understood. Toward this end, the biologic activities of a recently generated recombinant murine (m) LT alpha preparation were evaluated. This cytokine preparation was effective at inducing cytotoxicity of WEHI target cells with 50% maximal killing observed with 1.2 ng/ml. mLT alpha also induced the expression of inflammatory mediators in the murine endothelial cell line bEnd.3. rmLT alpha induced expression of the adhesion molecules VCAM, ICAM, E-selectin, and the mucosal addressin cellular adhesion molecule, MAdCAM-1. When mLT alpha, human (h) LT alpha, and mTNF-alpha were compared, mLT alpha was the most potent inducer of MAdCAM-1. None of these cytokines induced the peripheral node addressin, PNAd. mLT alpha also induced expression of the chemokines RANTES, IFN-inducible protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1). mRNA levels peaked 4 h following treatment with mLT alpha and declined through the 24-h treatment period. LT alpha also induced chemokine protein within 8 h of treatment, which increased through the 24-h treatment period. These data demonstrate that the proinflammatory effects of LT alpha3 may be mediated in part through the induction of adhesion molecule and chemokine expression. Further, LT alpha3 may promote development of lymphoid tissue through induction of chemokines and the mucosal addressin MAdCAM-1. These data confirm previous observations in transgenic and knockout mice that LT alpha3 in the absence of LT beta carries out unique biologic activities.


Assuntos
Moléculas de Adesão Celular/biossíntese , Quimiocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/fisiopatologia , Tecido Linfoide/embriologia , Linfotoxina-alfa/farmacologia , Animais , Moléculas de Adesão Celular/genética , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Quimiocina CCL4 , Quimiocina CCL5/biossíntese , Quimiocina CCL5/genética , Quimiocina CXCL10 , Quimiocina CXCL2 , Quimiocinas/genética , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Citotoxicidade Imunológica , Selectina E/biossíntese , Selectina E/genética , Desenvolvimento Embrionário e Fetal , Humanos , Imunoglobulinas/biossíntese , Imunoglobulinas/genética , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Linfotoxina-alfa/química , Linfotoxina-alfa/fisiologia , Proteínas Inflamatórias de Macrófagos/biossíntese , Proteínas Inflamatórias de Macrófagos/genética , Camundongos , Monocinas/biossíntese , Monocinas/genética , Mucoproteínas/biossíntese , Mucoproteínas/genética , Proteínas Recombinantes de Fusão/farmacologia , Especificidade da Espécie , Estimulação Química , Células Tumorais Cultivadas , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética
14.
J Immunol ; 161(9): 4480-3, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9794370

RESUMO

Myelin oligodendrocyte glycoprotein (MOG) induced experimental allergic encephalomyelitis (EAE) is an animal model for the central nervous system disease multiple sclerosis (MS). The roles of individual components of the immune system have not been completely defined in the mouse model, and to determine the role of B cells and Abs in the induction of EAE and demyelination, B cell-deficient muMT (H-2b) mice were immunized with MOG peptide 35-55. The muMT mice were susceptible to MOG-induced EAE and developed a chronic sustained disease, with inflammatory lesions and primary demyelination in the spinal cord, brain, and optic nerves, similar to that seen in wild-type C57BL/6 mice. The inflammatory cells in the central nervous system of muMT mice included both activated and memory T cells and macrophages. The data suggest that B cells and Abs are not necessary for primary demyelination in MOG-induced EAE in mice.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/patologia , Doenças Desmielinizantes/etiologia , Encefalomielite Autoimune Experimental/imunologia , Síndromes de Imunodeficiência/complicações , Glicoproteína Associada a Mielina/imunologia , Oligodendroglia/imunologia , Sequência de Aminoácidos , Animais , Doenças Autoimunes/patologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunização , Hospedeiro Imunocomprometido , Síndromes de Imunodeficiência/imunologia , Memória Imunológica , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/imunologia , Subpopulações de Linfócitos T/imunologia
15.
J Immunol ; 160(1): 485-91, 1998 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9552007

RESUMO

Lymphotoxin (LT, LT alpha, TNF beta) is a member of the immediate TNF family that also includes TNF-alpha and lymphotoxin-beta (LT beta). LT is produced by activated lymphocytes and functions as either a secreted homotrimer or a membrane-associated heterotrimer that includes the transmembrane protein LT beta. Secreted LT alpha3 can bind to two cell surface receptors, TNFR1 and TNFR2, while the membrane-bound heterotrimer LT alpha1beta2 has been shown to interact with a distinct receptor, LT betaR. LT alpha induces inflammation at the sites of expression of a rat insulin promoter-driven lymphotoxin (RIPLT) transgene in the pancreas and kidney. To determine the role of the various ligands and their receptors in LT-induced inflammation, mice deficient in either TNFR1, TNFR2, or LT beta were crossed to RIPLT-transgenic mice. Our results indicate that LT alpha-induced inflammation is dependent on the interaction of LT alpha3 with TNFR1, and there is no obvious role for TNFR2, since in its absence, LT alpha-induced inflammation is quantitatively and qualitatively similar to that seen in the wild type. However, the absence of LT beta results in accentuated infiltration of the kidney with an increase in the proportion of memory cells in the infiltrate. These data show a crucial role for the secreted LT alpha3 signaling via TNFR1 in LT alpha-induced inflammation, and a separate and distinct role for the membrane LT alpha1beta2 form in this inflammatory process.


Assuntos
Antígenos CD/fisiologia , Inflamação/imunologia , Integrinas/metabolismo , Linfotoxina-alfa/química , Linfotoxina-alfa/fisiologia , Proteínas de Membrana/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Animais , Linfócitos B/imunologia , Moléculas de Adesão Celular , Membrana Celular/imunologia , Imunoglobulinas/metabolismo , Rim/imunologia , Linfotoxina-alfa/metabolismo , Linfotoxina-beta , Camundongos , Camundongos Knockout , Mucoproteínas/metabolismo , Pâncreas/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral , Proteínas Recombinantes , Transdução de Sinais , Linfócitos T/imunologia
17.
J Exp Med ; 186(8): 1233-40, 1997 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-9334362

RESUMO

The lymphotoxin (LT)/tumor necrosis factor (TNF) family has been implicated in the neurologic inflammatory diseases multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). To determine the role of individual family members in EAE, C57BL/6 mice, LT-alpha-deficient (LT-alpha-/- mice), or LT-beta-deficient (LT-beta-/- mice), and their wild-type (WT) littermates were immunized with rat myelin oligodendrocyte glycoprotein (MOG) peptide 35-55. C57BL/6 and WT mice developed chronic, sustained paralytic disease with average maximum clinical scores of 3.5 and disease indices (a measure of day of onset and sustained disease scores) ranging from 367 to 663 with central nervous system (CNS) inflammation and demyelination. LT-alpha-/- mice were primed so that their splenic lymphocytes proliferated in response to MOG 35-55 and the mice produced anti-MOG antibody. However, LT-alpha-/- mice were quite resistant to EAE with low average clinical scores (<1), an average disease index of 61, and the negligible CNS inflammation and demyelination. WT T cells transferred EAE to LT-alpha-/- recipients. LT-beta-/- mice were susceptible to EAE, though less than WT, with an average maximum clinical score of 1.9 and disease index of 312. These data implicate T cell production of LT-alpha in MOG EAE and support a major role for LT-alpha3, a minor role for the LT-alpha/beta complex, and by inference, no role for TNF-alpha.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Linfotoxina-alfa/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Linfotoxina-alfa/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito , Oligodendroglia/imunologia , Medula Espinal/patologia , Vacinação
18.
J Immunol ; 159(9): 4252-60, 1997 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9379020

RESUMO

Lymphotoxin-alpha (LT alpha) has recently been demonstrated to be important in the development of lymph nodes (LN), Peyer's patches, and splenic organization, including the development of germinal centers. To elucidate the role of LT alpha in lymphoid organogenesis and the plasticity of the process, we examined LT alpha-/- mice in which an LT alpha transgene under the control of the rat insulin promoter (RIPLT) is expressed in the pancreas, kidney, and skin. The LT alpha transgene restored LN in LT alpha-/- mice. The reconstituted LN of RIPLT.LT alpha-/- mice had germinal center-like peanut agglutinin-positive regions, but lacked follicular dendritic cells. Although the LT alpha transgene did not restore Peyer's patches or splenic architecture, it restored the ability of the spleen to form germinal centers and follicular dendritic cell networks. Lymphocytes isolated from the reconstituted LN showed normal proliferative responses to T and B cell mitogens and were defective in their proliferative response to T-dependent Ag, and a decreased number of interdigitating dendritic cells was apparent in the RIPLT.LT alpha-/- mice LN. Expression of the RIPLT transgene in mice deficient in LT beta did not reconstitute LN, suggesting an important role for LT beta in the mechanisms that reconstitute LN in RIPLT.LT alpha-/- mice. These data are the first to demonstrate reconstitution of LN in LT alpha-/- mice and show that the process of LN restoration is amenable to manipulation with ectopic lymphotoxin.


Assuntos
Regulação da Expressão Gênica , Linfonodos/crescimento & desenvolvimento , Linfotoxina-alfa/genética , Camundongos Transgênicos , Animais , Linfonodos/imunologia , Linfotoxina-alfa/imunologia , Camundongos , Nódulos Linfáticos Agregados/crescimento & desenvolvimento , Nódulos Linfáticos Agregados/imunologia , Ratos
19.
J Immunol ; 159(4): 1828-34, 1997 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9257846

RESUMO

CD8+ T cells play a protective role in immunity to cutaneous leishmaniasis. However, it has been unclear how these cells execute this function, since results from several investigations attempting to demonstrate recognition of Leishmania-infected macrophages by CD8+ T cells have been contradictory. In this study, we report the generation of CD8+ T cell lines specific for GP46/M-2, a leishmanial Ag, previously shown to protectively immunize mice against a Leishmania amazonensis challenge. Using T cell cytolysis and IFN-gamma production to assess CD8+ T cell activation, we show that in addition to recognizing mammalian cells transfected with GP46/M-2, these CD8+ T cell lines also recognize macrophages infected with Leishmania amazonensis. MHC class I presentation of GP46/M-2 by infected macrophages can be blocked by treatment with brefeldin A and also by inhibitors of the cytosolic multicatalytic proteasome, N-acetyl-L-leucinyl-L-leucinal-L-norleucinal and N-acetyl-L-leucinyl-L-leucinylmethional. These results suggest that this leishmanial Ag is processed in the macrophage cytoplasm and is presented to CD8+ T cells via the classical pathway of MHC class I presentation. The relevance of these findings as they impact on our understanding of the biology of the parasite within the macrophage is discussed.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Leishmania/imunologia , Macrófagos/imunologia , Animais , Citocinas/biossíntese , Feminino , Ativação Linfocitária , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos CBA
20.
J Immunol ; 158(11): 5374-83, 1997 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9164958

RESUMO

Most inbred strains of mice are susceptible to Leishmania amazonensis infection. We have examined the mechanism(s) underlying this generalized susceptibility using mice deficient in T cell development or in the expression of either MHC class I or class II. In contrast to wild-type C57BL/6 (B6) mice that uniformly developed large ulcerating lesions, mice lacking functional CD4+ T cells (due to targeted disruption of genes for either MHC class II trans-activator or I-A beta) showed no signs of lesion development for up to 12 to 14 wk postinfection and contained significantly lower numbers of parasites in lesions. Similarly, both B6 nude and RAG2 -/- mice failed to develop lesions. However, RAG2 -/- mice reconstituted with naive wild-type CD4+ T cells and beta2m -/- mice did develop lesions. Lesions of MHC class II -/- mice contained minimal numbers of CD8+ T cells, a marked reduction of monocytes/macrophages, and evident extracellular parasites. The inability to mount an inflammatory response in MHC class II -/- mice correlated with the failure to produce lymphokines that lead to the recruitment of monocytes/granulocytes. These results demonstrate that CD4+ T cells are the primary lymphocyte subset that mediates cellular infiltration, lesion pathology, and therefore, susceptibility to L. amazonensis infection. The disease-promoting CD4+ T cells in L. amazonensis-infected mice have the characteristics of Th1 cells. The striking differences in the course of infection between MHC class II -/- mice infected with L. amazonensis and Leishmania major suggest that these parasites may have adapted different strategies regarding the CD4-dependent immune response.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Ligação a DNA , Antígenos de Histocompatibilidade Classe II/imunologia , Leishmania , Leishmaniose/imunologia , Proteínas/imunologia , Animais , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA