Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 12(1): 19538, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376420

RESUMO

In February 2021, in response to emergence of more transmissible SARS-CoV-2 virus variants, the Canton Grisons launched a unique RNA mass testing program targeting the labour force in local businesses. Employees were offered weekly tests free of charge and on a voluntary basis. If tested positive, they were required to self-isolate for ten days and their contacts were subjected to daily testing at work. Thereby, the quarantine of contact persons could be waved.Here, we evaluate the effects of the testing program on the tested cohorts. We examined 121,364 test results from 27,514 participants during February-March 2021. By distinguishing different cohorts of employees, we observe a noticeable decrease in the test positivity rate and a statistically significant reduction in the associated incidence rate over the considered period. The reduction in the latter ranges between 18 and 50%. The variability is partly explained by different exposures to exogenous infection sources (e.g., contacts with visiting tourists or cross-border commuters). Our analysis provides the first empirical evidence that applying repetitive mass testing to a real population over an extended period of time can prevent spread of COVID-19 pandemic. However, to overcome logistic, uptake, and adherence challenges it is important that the program is carefully designed and that disease incursion from the population outside of the program is considered and controlled.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias/prevenção & controle , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , Suíça/epidemiologia
2.
Nat Methods ; 19(10): 1276-1285, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138173

RESUMO

Experimental studies of cell growth, inheritance and their associated processes by microscopy require accurate single-cell observations of sufficient duration to reconstruct the genealogy. However, cell tracking-assigning identical cells on consecutive images to a track-is often challenging, resulting in laborious manual verification. Here, we propose fingerprints to identify problematic assignments rapidly. A fingerprint distance compares the structural information contained in the low frequencies of a Fourier transform to measure the similarity between cells in two consecutive images. We show that fingerprints are broadly applicable across cell types and image modalities, provided the image has sufficient structural information. Our tracker (TracX) uses fingerprints to reject unlikely assignments, thereby increasing tracking performance on published and newly generated long-term data sets. For Saccharomyces cerevisiae, we propose a comprehensive model for cell size control at the single-cell and population level centered on the Whi5 regulator, demonstrating how precise tracking can help uncover previously undescribed single-cell biology.


Assuntos
Rastreamento de Células , Humanos
3.
Nat Commun ; 13(1): 3483, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732645

RESUMO

The regulation of cell growth has fundamental physiological, biotechnological and medical implications. However, methods that can continuously monitor individual cells at sufficient mass and time resolution hardly exist. Particularly, detecting the mass of individual microbial cells, which are much smaller than mammalian cells, remains challenging. Here, we modify a previously described cell balance ('picobalance') to monitor the proliferation of single cells of the budding yeast, Saccharomyces cerevisiae, under culture conditions in real time. Combined with optical microscopy to monitor the yeast morphology and cell cycle phase, the picobalance approaches a total mass resolution of 0.45 pg. Our results show that single budding yeast cells (S/G2/M phase) increase total mass in multiple linear segments sequentially, switching their growth rates. The growth rates weakly correlate with the cell mass of the growth segments, and the duration of each growth segment correlates negatively with cell mass. We envision that our technology will be useful for direct, accurate monitoring of the growth of single cells throughout their cycle.


Assuntos
Saccharomycetales , Animais , Ciclo Celular/fisiologia , Divisão Celular , Fase G2 , Mamíferos , Saccharomyces cerevisiae/metabolismo
4.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410128

RESUMO

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genômica , Humanos , Mutação , SARS-CoV-2/genética , Sequenciamento Completo do Genoma
6.
Cell Rep ; 38(3): 110242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34998467

RESUMO

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Plasmócitos/metabolismo , SARS-CoV-2/imunologia , Análise de Célula Única/métodos , Animais , Anticorpos Antivirais/isolamento & purificação , COVID-19/imunologia , COVID-19/prevenção & controle , Células Cultivadas , Estudos de Coortes , Biblioteca Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mamíferos , Testes de Neutralização , Biblioteca de Peptídeos , Plasmócitos/química
7.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342575

RESUMO

Conditional expression of genes and observation of phenotype remain central to biological discovery. Current methods enable either on/off or imprecisely controlled graded gene expression. We developed a 'well-tempered' controller, WTC846, for precisely adjustable, graded, growth condition independent expression of genes in Saccharomyces cerevisiae. Controlled genes are expressed from a strong semisynthetic promoter repressed by the prokaryotic TetR, which also represses its own synthesis; with basal expression abolished by a second, 'zeroing' repressor. The autorepression loop lowers cell-to-cell variation while enabling precise adjustment of protein expression by a chemical inducer. WTC846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes (CDC42, TPI1), exhibited novel overexpression phenotypes (IPL1), showed protein dosage-dependent growth rates and morphological phenotypes (CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1), and enabled cell cycle synchronization (CDC20). WTC846 defines an 'expression clamp' allowing protein dosage to be adjusted by the experimenter across the range of cellular protein abundances, with limited variation around the setpoint.


Assuntos
Alelos , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20/metabolismo , Regulação Fúngica da Expressão Gênica , Fenótipo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
8.
Front Immunol ; 12: 701085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322127

RESUMO

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Imunidade Adaptativa , Adulto , Idoso , Células Cultivadas , Convalescença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Análise de Célula Única , Transcriptoma , Adulto Jovem
9.
Talanta ; 231: 122401, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965050

RESUMO

To facilitate in situ comparative culturing of budding yeast cells in a precisely controlled microenvironment, we developed a microfluidic single-cell array (MiSCA) with 96 traps (16 rows × 6 columns) for single-cell immobilization. Through optimization of the distances between neighboring traps and the applied flow rates by using a hydraulic equivalent circuit of the fluidic network, yeast cells were delivered to each column of the array by laminar focused flows and reliably captured at the traps by hydrodynamic forces with about 90% efficiency of cell immobilization. Immobilized cells in different columns within the same device can then be cultured in parallel while being exposed to different media and compounds delivered by laminar flows. For biological validation of the comparative cell-culturing device, we used budding yeast that can express yellow fluorescent protein upon the addition of ß-estradiol in cell-culturing medium. Experimental results show successful induction of fluorescence in cells immobilized in desired columns that have been dosed with ß-estradiol. The MiSCA system allows for performing sets of experiments and control experiments in parallel in the same device, or for executing comparative experiments under well-defined laminar-perfusion conditions with different media, as well as in situ monitoring of dynamic cellular responses upon different analytical compounds or reagents for single-cell analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Saccharomycetales , Hidrodinâmica , Microfluídica , Análise de Célula Única
10.
RNA Biol ; 18(12): 2218-2225, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33966602

RESUMO

Early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes. To broaden the possibilities of reagents and thermocyclers that could be allocated towards this task, we have optimized an alternative strategy for RT-qPCR diagnosis. This is based on a widely used DNA-intercalating dye and can be implemented with several different qPCR reagents and instruments. Remarkably, the proposed qPCR method performs similarly to the broadly used TaqMan-based detection, in terms of specificity and sensitivity, thus representing a reliable tool. We think that, through enabling the use of vast range of thermocycler models and laboratory facilities for SARS-CoV-2 diagnosis, the alternative proposed here can increase dramatically the testing capability, especially in countries with limited access to costly technology and reagents.


Assuntos
Benzotiazóis/química , Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Diaminas/química , Substâncias Intercalantes/química , Quinolinas/química , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/normas , DNA/análise , DNA/biossíntese , Primers do DNA/química , Primers do DNA/metabolismo , Humanos , Nasofaringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade
11.
Nat Commun ; 12(1): 1886, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767179

RESUMO

Cells can encode information about their environment by modulating signaling dynamics and responding accordingly. Yet, the mechanisms cells use to decode these dynamics remain unknown when cells respond exclusively to transient signals. Here, we approach design principles underlying such decoding by rationally engineering a synthetic short-pulse decoder in budding yeast. A computational method for rapid prototyping, TopoDesign, allowed us to explore 4122 possible circuit architectures, design targeted experiments, and then rationally select a single circuit for implementation. This circuit demonstrates short-pulse decoding through incoherent feedforward and positive feedback. We predict incoherent feedforward to be essential for decoding transient signals, thereby complementing proposed design principles of temporal filtering, the ability to respond to sustained signals, but not to transient signals. More generally, we anticipate TopoDesign to help designing other synthetic circuits with non-intuitive dynamics, simply by assembling available biological components.


Assuntos
Biologia Computacional/métodos , Saccharomyces cerevisiae/fisiologia , Biologia Sintética/métodos , Redes Reguladoras de Genes , Modelos Biológicos , Transdução de Sinais
12.
SoftwareX ; 15: 100710, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36568894

RESUMO

Lateral flow Point-Of-Care Tests (POCTs) are a valuable tool for rapidly detecting pathogens and the associated immune response in humans and animals. In the context of the SARS-CoV-2 pandemic, they offer rapid on-site diagnostics and can relieve centralized laboratory testing sites, thus freeing resources that can be focused on especially vulnerable groups. However, visual interpretation of the POCT test lines is subjective, error prone and only qualitative. Here we present pyPOCQuant, an open-source tool implemented in Python 3 that can robustly and reproducibly analyze POCTs from digital images and return an unbiased and quantitative measurement of the POCT test lines.

13.
G3 (Bethesda) ; 10(12): 4373-4385, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023973

RESUMO

Time-lapse imaging of live cells using multiple fluorescent reporters is an essential tool to study molecular processes in single cells. However, exposure to even moderate doses of visible excitation light can disturb cellular physiology and alter the quantitative behavior of the cells under study. Here, we set out to develop guidelines to avoid the confounding effects of excitation light in multi-color long-term imaging. We use widefield fluorescence microscopy to measure the effect of the administered excitation light on growth rate (here called photomorbidity) in yeast. We find that photomorbidity is determined by the cumulative light dose at each wavelength, but independent of the way excitation light is applied. Importantly, photomorbidity possesses a threshold light dose below which no effect is detectable (NOEL). We found, that the suitability of fluorescent proteins for live-cell imaging at the respective excitation light NOEL is equally determined by the cellular autofluorescence and the fluorescent protein brightness. Last, we show that photomorbidity of multiple wavelengths is additive and imaging conditions absent of photomorbidity can be predicted. Our findings enable researchers to find imaging conditions with minimal impact on physiology and can provide framework for how to approach photomorbidity in other organisms.


Assuntos
Microscopia de Fluorescência , Saccharomyces cerevisiae , Schizosaccharomyces , Cor , Fluorescência , Imagem Óptica , Saccharomyces cerevisiae/genética
14.
Yeast ; 37(5-6): 336-347, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065695

RESUMO

Saccharomyces cerevisiae cells grown in a small volume of chemically defined media neither reach the desired cell density nor grow at a fast enough rate to scale down the volume and increase the sample number of classical biochemical assays, as the detection limit of the readout often requires a high number of cells as an input. To ameliorate this problem, we developed and optimised a new high cell density (HCD) medium for S. cerevisiae. Starting from a widely used synthetic medium composition, we systematically varied the concentrations of all components without the addition of other compounds. We used response surface methodology to develop and optimise the five components of the medium: glucose, yeast nitrogen base, amino acids, monosodium glutamate, and inositol. We monitored growth, cell number, and cell size to ensure that the optimisation was towards a greater density of cells rather than just towards an increase in biomass (i.e., larger cells). Cells grown in the final medium, HCD, exhibit growth more similar to the complex medium yeast extract peptone dextrose (YPD) than to the synthetic defined (SD) medium. Whereas the final cell density of HCD prior to the diauxic shift is increased compared with YPD and SD about threefold and tenfold, respectively. We found normal cell-cycle behaviour throughout the growth phases by monitoring DNA content and protein expression using fluorescent reporters. We also ensured that HCD media could be used with a variety of strains and that they allow selection for all common yeast auxotrophic markers.


Assuntos
Meios de Cultura/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Amilases/metabolismo , Biomassa , Ciclo Celular , Tamanho Celular , Proteínas Fúngicas
15.
J Cell Biol ; 218(9): 3117-3133, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31315942

RESUMO

Cells continuously adapt cellular processes by integrating external and internal signals. In yeast, multiple stress signals regulate pheromone signaling to prevent mating under unfavorable conditions. However, the underlying crosstalk mechanisms remain poorly understood. Here, we show that mechanical stress activates Pkc1, which prevents lysis of pheromone-treated cells by inhibiting polarized growth. In vitro Pkc1 phosphorylates conserved residues within the RING-H2 domains of the scaffold proteins Far1 and Ste5, which are also phosphorylated in vivo. Interestingly, Pkc1 triggers dispersal of Ste5 from mating projections upon mechanically induced stress and during cell-cell fusion, leading to inhibition of the MAPK Fus3. Indeed, RING phosphorylation interferes with Ste5 membrane association by preventing binding to the receptor-linked Gßγ protein. Cells expressing nonphosphorylatable Ste5 undergo increased lysis upon mechanical stress and exhibit defects in cell-cell fusion during mating, which is exacerbated by simultaneous expression of nonphosphorylatable Far1. These results uncover a mechanical stress-triggered crosstalk mechanism modulating pheromone signaling, polarized growth, and cell-cell fusion during mating.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Mecânico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Cell Syst ; 8(1): 15-26.e11, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30638813

RESUMO

Single-cell time-lapse data provide the means for disentangling sources of cell-to-cell and intra-cellular variability, a key step for understanding heterogeneity in cell populations. However, single-cell analysis with dynamic models is a challenging open problem: current inference methods address only single-gene expression or neglect parameter correlations. We report on a simple, flexible, and scalable method for estimating cell-specific and population-average parameters of non-linear mixed-effects models of cellular networks, demonstrating its accuracy with a published model and dataset. We also propose sensitivity analysis for identifying which biological sub-processes quantitatively and dynamically contribute to cell-to-cell variability. Our application to endocytosis in yeast demonstrates that dynamic models of realistic size can be developed for the analysis of single-cell data and that shifting the focus from single reactions or parameters to nuanced and time-dependent contributions of sub-processes helps biological interpretation. Generality and simplicity of the approach will facilitate customized extensions for analyzing single-cell dynamics.


Assuntos
Análise de Célula Única/métodos , Biologia de Sistemas/métodos , Humanos
17.
Sci Rep ; 8: 46976, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29769631

RESUMO

This corrects the article DOI: 10.1038/srep28166.

18.
ACS Synth Biol ; 7(3): 922-932, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29486123

RESUMO

Robotic automation in synthetic biology is especially relevant for liquid handling to facilitate complex experiments. However, research tasks that are not highly standardized are still rarely automated in practice. Two main reasons for this are the substantial investments required to translate molecular biological protocols into robot programs, and the fact that the resulting programs are often too specific to be easily reused and shared. Recent developments of standardized protocols and dedicated programming languages for liquid-handling operations addressed some aspects of ease-of-use and portability of protocols. However, either they focus on simplicity, at the expense of enabling complex protocols, or they entail detailed programming, with corresponding skills and efforts required from the users. To reconcile these trade-offs, we developed Roboliq, a software system that uses artificial intelligence (AI) methods to integrate (i) generic formal, yet intuitive, protocol descriptions, (ii) complete, but usually hidden, programming capabilities, and (iii) user-system interactions to automatically generate executable, optimized robot programs. Roboliq also enables high-level specifications of complex tasks with conditional execution. To demonstrate the system's benefits for experiments that are difficult to perform manually because of their complexity, duration, or time-critical nature, we present three proof-of-principle applications for the reproducible, quantitative characterization of GFP variants.


Assuntos
Robótica/métodos , Automação , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Mutantes/química , Concentração Osmolar , Dobramento de Proteína
19.
Blood ; 131(13): 1425-1429, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29453290

RESUMO

Keeping track of individual cell identifications is imperative to the study of dynamic single-cell behavior over time. Highly motile hematopoietic stem and progenitor cells (HSPCs) migrate quickly and do not adhere, and thus must be imaged very frequently to keep cell identifications. Even worse, they are also flushed away during medium exchange. To overcome these limitations, we tested antibody coating for reducing HSPC motility in vitro. Anti-CD43- and anti-CD44-antibody coating reduced the cell motility of mouse and human HSPCs in a concentration-dependent manner. This enables 2-dimensional (2D) colony formation without cell mixing in liquid cultures, massively increases time-lapse imaging throughput, and also maintains cell positions during media exchange. Anti-CD43 but not anti-CD44 coating reduces mouse HSPC proliferation with increasing concentrations. No relevant effects on cell survival or myeloid and megakaryocyte differentiation of hematopoietic stem cells and multipotent progenitors 1-5 were detected. Human umbilical cord hematopoietic CD34+ cell survival, proliferation, and differentiation were not affected by either coating. This approach both massively simplifies and accelerates continuous analysis of suspension cells, and enables the study of their behavior in dynamic rather than static culture conditions over time.


Assuntos
Anticorpos/farmacologia , Células Imobilizadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores de Hialuronatos/antagonistas & inibidores , Leucossialina/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Camundongos
20.
Microsyst Nanoeng ; 4: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057898

RESUMO

Growth rate is a widely studied parameter for various cell-based biological studies. Growth rates of cell populations can be monitored in chemostats and micro-chemostats, where nutrients are continuously replenished. Here, we present an integrated microfluidic platform that enables long-term culturing of non-adherent cells as well as parallel and mutually independent continuous monitoring of (i) growth rates of cells by means of impedance measurements and of (ii) specific other cellular events by means of high-resolution optical or fluorescence microscopy. Yeast colonies were grown in a monolayer under culturing pads, which enabled high-resolution microscopy, as all cells were in the same focal plane. Upon cell growth and division, cells leaving the culturing area passed over a pair of electrodes and were counted through impedance measurements. The impedance data could then be used to directly determine the growth rates of the cells in the culturing area. The integration of multiple culturing chambers with sensing electrodes enabled multiplexed long-term monitoring of growth rates of different yeast strains in parallel. As a demonstration, we modulated the growth rates of engineered yeast strains using calcium. The results indicated that impedance measurements provide a label-free readout method to continuously monitor the changes in the growth rates of the cells without compromising high-resolution optical imaging of single cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA