RESUMO
PURPOSE: Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN: We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS: Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS: Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Doenças Neuroinflamatórias , Receptores de GABA , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Humanos , Animais , Camundongos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/diagnóstico , Adulto , Tomografia por Emissão de Pósitrons/métodos , Idoso , Prognóstico , Microambiente Tumoral/imunologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/diagnóstico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/diagnóstico , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Sensibilidade e Especificidade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso de 80 Anos ou maisRESUMO
Various cellular sources hamper interpretation of positron emission tomography (PET) biomarkers in the tumor microenvironment (TME). We developed an approach of immunomagnetic cell sorting after in vivo radiotracer injection (scRadiotracing) with three-dimensional (3D) histology to dissect the cellular allocation of PET signals in the TME. In mice with implanted glioblastoma, translocator protein (TSPO) radiotracer uptake per tumor cell was higher compared to tumor-associated microglia/macrophages (TAMs), validated by protein levels. Translation of in vitro scRadiotracing to patients with glioma immediately after tumor resection confirmed higher single-cell TSPO tracer uptake of tumor cells compared to immune cells. Across species, cellular radiotracer uptake explained the heterogeneity of individual TSPO-PET signals. In consideration of cellular tracer uptake and cell type abundance, tumor cells were the main contributor to TSPO enrichment in glioblastoma; however, proteomics identified potential PET targets highly specific for TAMs. Combining cellular tracer uptake measures with 3D histology facilitates precise allocation of PET signals and serves to validate emerging novel TAM-specific radioligands.
Assuntos
Glioblastoma , Glioma , Humanos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Microambiente Tumoral , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Microglia/metabolismo , Proteínas de Transporte/metabolismo , Receptores de GABA/metabolismoRESUMO
The 18-kDa translocator protein (TSPO) is gaining recognition as a relevant target in glioblastoma imaging. However, data on the potential prognostic value of TSPO PET imaging in glioblastoma are lacking. Therefore, we investigated the association of TSPO PET imaging results with survival outcome in a homogeneous cohort of glioblastoma patients. Methods: Patients were included who had newly diagnosed, histologically confirmed isocitrate dehydrogenase (IDH)-wild-type glioblastoma with available TSPO PET before either normofractionated radiotherapy combined with temozolomide or hypofractionated radiotherapy. SUVmax on TSPO PET, TSPO binding affinity status, tumor volumes on MRI, and further clinical data, such as O 6-alkylguanine DNA methyltransferase (MGMT) and telomerase reverse transcriptase (TERT) gene promoter mutation status, were correlated with patient survival. Results: Forty-five patients (median age, 63.3 y) were included. Median SUVmax was 2.2 (range, 1.0-4.7). A TSPO PET signal was associated with survival: High uptake intensity (SUVmax > 2.2) was related to significantly shorter overall survival (OS; 8.3 vs. 17.8 mo, P = 0.037). Besides SUVmax, prognostic factors for OS were age (P = 0.046), MGMT promoter methylation status (P = 0.032), and T2-weighted MRI volume (P = 0.031). In the multivariate survival analysis, SUVmax in TSPO PET remained an independent prognostic factor for OS (P = 0.023), with a hazard ratio of 2.212 (95% CI, 1.115-4.386) for death in cases with a high TSPO PET signal (SUVmax > 2.2). Conclusion: A high TSPO PET signal before radiotherapy is associated with significantly shorter survival in patients with newly diagnosed IDH-wild-type glioblastoma. TSPO PET seems to add prognostic insights beyond established clinical parameters and might serve as an informative tool as clinicians make survival predictions for patients with glioblastoma.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Pessoa de Meia-Idade , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/radioterapia , Prognóstico , Isocitrato Desidrogenase/genética , Temozolomida/uso terapêutico , Tomografia por Emissão de Pósitrons , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Receptores de GABA/genéticaRESUMO
The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.
Assuntos
Predisposição Genética para Doença , Doença de Parkinson , Proteínas tau , Humanos , Encéfalo/metabolismo , Genótipo , Haplótipos , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Proteínas tau/genéticaRESUMO
PURPOSE: Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS: In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS: Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION: Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Recidiva Local de Neoplasia/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Tomografia por Emissão de Pósitrons/métodos , Tirosina , Receptores de GABA/genética , Receptores de GABA/metabolismoRESUMO
PURPOSE: The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [18F]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma. METHODS: A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [18F]FET PET prior to surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort. RESULTS: A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort. CONCLUSIONS: This study successfully built and evaluated prediction models using [18F]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [18F]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [18F]FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Tomografia por Emissão de Pósitrons/métodos , Tirosina , Estudos RetrospectivosRESUMO
BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Atrofia de Múltiplos Sistemas , Atrofias Olivopontocerebelares , Degeneração Estriatonigral , Autoanticorpos , Autopsia , Estudo de Associação Genômica Ampla , Humanos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP.
Assuntos
Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Tauopatias , Astrócitos/patologia , Cromatina , Humanos , Paralisia Supranuclear Progressiva/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion's tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson's disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson's disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson's disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson's disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson's disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.
RESUMO
The Borna disease virus 1 (BoDV-1) causes severe and often fatal encephalitis in humans. The virus is endemic in parts of Germany, Liechtenstein, Switzerland and Austria. As an increasing number of human BoDV-1 encephalitis cases is being diagnosed, the chance for healthcare professionals to come into contact with infected tissues and bodily fluids from patients with known acute bornavirus encephalitis is also increasing. Therefore, risk assessments are needed. Based on three different incidences of possible exposure to BoDV-1 including an autopsy knife injury, a needlestick injury, and a spill accident with cerebrospinal fluid from patients with acute BoDV-1 encephalitis, we perform risk assessments and review published data. BoDV-1 infection status of the index patient's tissues and bodily fluids to which contact had occurred should be determined. There is only scarce evidence for possible postexposure prophylaxis, serology, and imaging in healthcare professionals who possibly came into contact with the virus. Despite decade-long laboratory work with BoDV-1, not a single clinically apparent laboratory infection has been published. Given the increasing number of severe or fatal BoDV-1 encephalitis cases, there is a growing need for efficacy-tested, potent antiviral therapeutics against BoDV-1 in humans, both in clinically ill patients and possibly as postexposure prophylaxis in healthcare professionals.
RESUMO
BACKGROUND: Prostate specific membrane antigen (PSMA) PET imaging has recently gained attention in glioblastoma (GBM) patients as a potential theranostic target for PSMA radioligand therapy. However, PSMA PET has not yet been established in a murine GBM model. Our goal was to investigate the potential of PSMA PET imaging in the syngeneic GL261 GBM model and to give an outlook regarding the potential of PMSA radioligand therapy in this model. METHODS: We performed an 18F-PSMA-1007 PET study in the orthotopic GL261 model (n=14 GBM, n=7 sham-operated mice) with imaging at day 4, 8, 11, 15, 18 and 22 post implantation. Time-activity-curves (TAC) were extracted from dynamic PET scans (0-120 min p. i.) in a subset of mice (n=4 GBM, n=3 sham-operated mice) to identify the optimal time frame for image analysis, and standardized-uptake-values (SUV) as well as tumor-to-background ratios (TBR) using contralateral normal brain as background were calculated in all mice. Additionally, computed tomography (CT), ex vivo and in vitro 18F-PSMA-1007 autoradiographies (ARG) were performed. RESULTS: TAC analysis of GBM mice revealed a plateau of TBR values after 40 min p. i. Therefore, a 30 min time frame between 40-70 min p. i. was chosen for PET quantification. At day 15 and later, GBM mice showed a discernible PSMA PET signal on the inoculation site, with highest TBRmean in GBM mice at day 18 (7.3 ± 1.3 vs. 1.6 ± 0.3 in shams; p=0.024). Ex vivo ARG confirmed high tracer signal in GBM compared to healthy background (TBRmean 26.9 ± 10.5 vs. 1.6 ± 0.7 in shams at day 18/22 post implantation; p=0.002). However, absolute uptake values in the GL261 tumor remained low (e.g., SUVmean 0.21 ± 0.04 g/ml at day 18) resulting in low ratios compared to dose-relevant organs (e.g., mean tumor-to-kidney ratio 1.5E-2 ± 0.5E-2). CONCLUSIONS: Although 18F-PSMA-1007 PET imaging of GL261 tumor-bearing mice is feasible and resulted in high TBRs, absolute tumoral uptake values remained low and hint to limited applicability of the GL261 model for PSMA-directed therapy studies. Further investigations are warranted to identify suitable models for preclinical evaluation of PSMA-targeted theranostic approaches in GBM.
RESUMO
PURPOSE: To evaluate radiomic features extracted from standard static images (20-40 min p.i.), early summation images (5-15 min p.i.), and dynamic [18F]FET PET images for the prediction of TERTp-mutation status in patients with IDH-wildtype high-grade glioma. METHODS: A total of 159 patients (median age 60.2 years, range 19-82 years) with newly diagnosed IDH-wildtype diffuse astrocytic glioma (WHO grade III or IV) and dynamic [18F]FET PET prior to surgical intervention were enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and texture radiomic features were extracted from standard static (20-40 min summation images; TBR20-40), early static (5-15 min summation images; TBR5-15), and dynamic (time-to-peak; TTP) images, respectively. Recursive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after normalization, and logistic regression models were generated using the radiomic features extracted from each image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the training and testing cohort. RESULTS: The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an AUC of 0.82 (95% confidence interval 0.71-0.92) and sensitivity of 92.1% in the independent testing cohort. Weak predictive capability was obtained in the TBR5-15 model, with an AUC of 0.61 (95% CI 0.42-0.80) in the testing cohort, while no predictive power was observed in the TBR20-40 model. CONCLUSIONS: Radiomics based on TTP images extracted from dynamic [18F]FET PET can predict the TERTp-mutation status of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively.
Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Adulto JovemRESUMO
AIM: The aim of the current study was to enlighten the evolution of prostate-specific membrane antigen (PSMA) expression in glioblastoma between initial diagnosis and recurrence in order to provide preliminary insight for further clinical investigations into innovative PSMA-directed treatment concepts in neuro-oncology. METHODS: Patients who underwent resection for de-novo glioblastoma (GBM) and had a re-resection in case of a recurrent tumor following radiochemotherapy and subsequent chemotherapy were included (n = 16). Histological and immunohistochemical stainings were performed at initial diagnosis and at recurrence (n = 96 tissue specimens). Levels of PSMA expression both in endothelial and non-endothelial cells as well as vascular density (CD34) were quantified via immunohistochemistry and changes between initial diagnosis and recurrence were determined. Immunohistochemical findings were correlated with survival and established clinical parameters. RESULTS: PSMA expression was found to be present in all GBM tissue samples at initial diagnosis as well as in all but one case of recurrent tumor samples. The level of PSMA expression in glioblastoma varied inter-individually both in endothelial and non-endothelial cells. Likewise, the temporal evolution of PSMA expression highly varied in between patients. The level of vascular PSMA expression at recurrence and its change between initial diagnosis and recurrence was associated with post recurrence survival time: Patients with high vascular PSMA expression at recurrence as well as patients with increasing PSMA expression throughout the disease course survived shorter than patients with low vascular PSMA expression or decreasing vascular PSMA expression. There was no significant correlation of PSMA expression with MGMT promoter methylation status or Ki-67 labelling index. CONCLUSION: PSMA is expressed in glioblastoma both at initial diagnosis and at recurrence. High vascular PSMA expression at recurrence seems to be a negative prognostic marker. Thus, PSMA expression in GBM might present a promising target for theranostic approaches in recurrent glioblastoma. Especially PSMA PET imaging and PSMA-directed radioligand therapy warrant further studies in brain tumor patients.
Assuntos
Fossa Craniana Posterior/patologia , Glioblastoma/patologia , Neoplasias Infratentoriais/patologia , Criança , Fossa Craniana Posterior/diagnóstico por imagem , Fossa Craniana Posterior/cirurgia , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Neoplasias Infratentoriais/cirurgia , Imageamento por Ressonância Magnética , Adulto JovemRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disease which is histologically characterized by loss of dopaminergic neurons in the substantia nigra and deposition of aggregated alpha-synuclein (aSyn) in the brain. The detection of aSyn in well accessible fluids has been one of the central approaches in the development of biomarkers for PD. Recently, real-time quaking-induced conversion (RT-QuIC) has been successfully adapted for use with aSyn seeds. Here, we systematically analysed parameters potentially impacting the reliability of this assay by using quantitative real-time quaking-induced conversion (qRT-QuIC) with in vitro-formed aSyn seeds. Seeds diluted in cerebrospinal fluid (CSF) accelerated the seeding reaction and slightly increased the sensitivity without affecting specificity. Repeated freeze-thaw cycles decreased the apparent lag times of seeds diluted in ddH2 O but did not alter the seeding activity of seeds diluted in CSF. High levels of artificial contamination with blood resulted in prolonged apparent lag times, while sensitivity and specificity were unaffected. Altogether, qRT-QuIC with aSyn seems to be robust concerning sensitivity and specificity in our model system, but quantitative interpretation might be limited under certain conditions.
Assuntos
Bioensaio/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/genética , Idoso , Artefatos , Biomarcadores , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , alfa-Sinucleína/metabolismoRESUMO
Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1-95 and 61-140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.
Assuntos
Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular , Espaço Extracelular/metabolismo , Técnicas de Inativação de Genes , Humanos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos , Domínios Proteicos , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidadeRESUMO
While fibrillar deposits of hyperphosphorylated protein tau are a key hallmark of several neurodegenerative diseases such as Alzheimer's disease, small oligomers have been speculated to be the key toxic aggregate species. Trivalent metal ions were shown to promote tau oligomer formation in vitro. However, little is known about potential intercellular spreading mechanisms or toxic modes of action of such oligomers. We investigated interactions of tau monomers and Fe3+/Al3+-induced oligomers with small unilamellar vesicles derived from 1-palmitoyl-2-oleoyl-phosphatidylcholine (neutral, liquid-crystalline phase) and dipalmitoyl-phosphatidylcholine (neutral, gel-phase). We further evaluated the influence of glycogen synthase kinase 3ß (GSK-3ß)-mediated tau phosphorylation applying the single-particle fluorescence spectroscopy techniques fluorescence correlation spectroscopy, fluorescence intensity distribution analysis, and scanning for intensely fluorescent targets. In these experiments, no binding to neutral lipid surfaces was observed for tau monomers. In contrast, metal-ion-induced tau oligomers showed a gain of function in binding to neutral lipid surfaces. Of note, tau phosphorylation by GSK-3ß increased both oligomer formation and membrane affinity of the resulting oligomers. In conclusion, our data imply a pathological gain of function of metal-ion-induced oligomers of hyperphosphorylated tau, enabling membrane binding irrespective of surface charge even at nanomolar protein concentrations.
Assuntos
Glicogênio Sintase Quinase 3 beta , Metais , Proteínas tau , Doença de Alzheimer/metabolismo , Íons , Lipídeos , Fosforilação , Proteínas tau/metabolismoRESUMO
BACKGROUND: Human encephalitis can originate from a variety of different aetiologies, of which infection is the most common one. The diagnostic work-up is specifically challenging in patients with travel history since a broader spectrum of unfamiliar additional infectious agents, e. g. tropical disease pathogens, needs to be considered. Here we present a case of encephalitis of unclear aetiology in a female traveller returning from Africa, who in addition developed an atypical herpes simplex virus (HSV) encephalitis in close temporal relation with high-dose steroid treatment. CASE PRESENTATION: A previously healthy 48-year-old female presented with confusion syndrome and impaired vigilance which had developed during a six-day trip to The Gambia. The condition rapidly worsened to a comatose state. Extensive search for infectious agents including a variety of tropical disease pathogens was unsuccessful. As encephalitic signs persisted despite of calculated antimicrobial and antiviral therapy, high-dose corticosteroids were applied intravenously based on the working diagnosis of an autoimmune encephalitis. The treatment did, however, not improve the patient's condition. Four days later, bihemispheric signal amplification in the insular and frontobasal cortex was observed on magnetic resonance imaging (MRI). The intracranial pressure rapidly increased and could not be controlled by conservative treatment. The patient died due to tonsillar herniation 21 days after onset of symptoms. Histological examination of postmortem brain tissue demonstrated a generalized lymphocytic meningoencephalitis. Immunohistochemical reactions against HSV-1/2 indicated an atypical manifestation of herpesviral encephalitis in brain tissue. Moreover, HSV-1 DNA was detected by a next-generation sequencing (NGS) metagenomics approach. Retrospective analysis of cerebrospinal fluid (CSF) and serum samples revealed HSV-1 DNA only in specimens one day ante mortem. CONCLUSIONS: This case shows that standard high-dose steroid therapy can contribute to or possibly even trigger fulminant cerebral HSV reactivation in a critically ill patient. Thus, even if extensive laboratory diagnostics including wide-ranging search for infectious pathogens has been performed before and remained without results, continuous re-evaluation of potential differential diagnoses especially regarding opportunistic infections or reactivation of latent infections is of utmost importance, particularly if new symptoms occur.
Assuntos
Encefalite por Herpes Simples/diagnóstico , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite por Herpes Simples/etiologia , Herpes Simples/diagnóstico , Herpesvirus Humano 1/isolamento & purificação , Esteroides/efeitos adversos , Autopsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , DNA Viral/sangue , DNA Viral/líquido cefalorraquidiano , Encefalite/diagnóstico , Feminino , Gâmbia , Doença de Hashimoto/diagnóstico , Herpes Simples/diagnóstico por imagem , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/patogenicidade , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Retrospectivos , Esteroides/uso terapêutico , ViagemRESUMO
Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.