Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(41): 21306-21315, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073832

RESUMO

Human blood platelets are non-nucleated fragments of megakaryocytes and of high importance for early hemostasis. To form a blood clot, platelets adhere to the blood vessel wall, spread and attract other platelets. Despite the importance for biomedicine, the exact mechanism of platelet spreading and adhesion to surfaces remains elusive. Here, we employ metal-induced energy transfer (MIET) imaging with a leaflet-specific fluorescent membrane probe to quantitatively determine, with nanometer resolution and in a time-resolved manner, the height profile of the basal and the apical platelet membrane above a rigid substrate during platelet spreading. We observe areas, where the platelet membrane approaches the substrate particularly closely and these areas are stable on a time scale of minutes. Time-resolved MIET measurements reveal distinct behaviors of the outermost rim and the central part of the platelets, respectively. Our findings quantify platelet adhesion and spreading and improve our understanding of early steps in blood clotting. Furthermore, the results of this study demonstrate the potential of MIET for simultaneous imaging of two close-by membranes and thus three-dimensional reconstruction of the cell shape.


Assuntos
Plaquetas , Trombose , Coagulação Sanguínea , Transferência de Energia , Humanos , Adesividade Plaquetária
2.
Commun Biol ; 3(1): 627, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128009

RESUMO

One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state.


Assuntos
Proteínas Luminescentes/química , Microscopia Confocal/instrumentação , Fotoquímica/métodos , Calibragem , Desenho de Equipamento , Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Microscopia Confocal/métodos , Fotoquímica/instrumentação , Teoria Quântica
3.
Methods Mol Biol ; 2175: 33-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681482

RESUMO

The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and control transport of macromolecules between the two compartments. Recently, it has been shown that the axial distance between the inner nuclear membrane and the cytoplasmic side of the NPC can be measured using dual-color metal-induced energy transfer (MIET). This chapter focuses on experimental aspects of this method and discusses the details of data analysis.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Membrana Nuclear/fisiologia , Poro Nuclear/fisiologia , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células HeLa , Humanos , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia
4.
J Chem Phys ; 148(20): 204201, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865842

RESUMO

Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.

5.
Nano Lett ; 18(4): 2616-2622, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29562123

RESUMO

Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

6.
Mol Biol Cell ; 29(7): 846-851, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444956

RESUMO

We report a novel method, dual-color axial nanometric localization by metal--induced energy transfer, and combine it with Förster resonance energy transfer (FRET) for resolving structural details in cells on the molecular level. We demonstrate the capability of this method on cytoskeletal elements and adhesions in human mesenchymal stem cells. Our approach is based on fluorescence-lifetime-imaging microscopy and allows for precise determination of the three-dimensional architecture of stress fibers anchoring at focal adhesions, thus yielding crucial information to understand cell-matrix mechanics. In addition to resolving nanometric structural details along the z-axis, we use FRET to gain precise information on the distance between actin and vinculin at focal adhesions.

7.
ACS Nano ; 11(12): 11839-11846, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28921961

RESUMO

The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2ß and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

8.
Nano Lett ; 17(5): 3320-3326, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28440076

RESUMO

The biological process of the epithelial-to-mesenchymal transition (EMT) allows epithelial cells to enhance their migratory and invasive behavior and plays a key role in embryogenesis, fibrosis, wound healing, and metastasis. Among the multiple biochemical changes from an epithelial to a mesenchymal phenotype, the alteration of cellular dynamics in cell-cell as well as cell-substrate contacts is crucial. To determine these variations over the whole time scale of the EMT, we measure the cell-substrate distance of epithelial NMuMG cells during EMT using our newly established metal-induced energy transfer (MIET) microscopy, which allows one to achieve nanometer axial resolution. We show that, in the very first hours of the transition, the cell-substrate distance increases substantially, but later in the process after reaching the mesenchymal state, this distance is reduced again to the level of untreated cells. These findings relate to a change in the number of adhesion points and will help to better understand remodeling processes associated with wound healing, embryonic development, cancer progression, or tissue regeneration.


Assuntos
Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Nanoestruturas/química , Animais , Comunicação Celular , Linhagem Celular , Movimento Celular , Adesões Focais , Mesoderma/citologia , Camundongos
9.
J Phys Chem Lett ; 8(7): 1472-1475, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28296418

RESUMO

Precise knowledge of the quantum yield is important for many fluorescence-spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence-spectroscopic studies involving lipid bilayers, such as protein-protein or protein-lipid interactions in membranes or direct fluorescence-spectroscopic measurements of membrane physical properties.

10.
Nano Lett ; 16(7): 4312-6, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27243936

RESUMO

Photobleaching of fluorophores is one of the key problems in fluorescence microscopy. Overcoming the limitation of the maximum number of photons, which can be detected from a single emitter, would allow one to enhance the signal-to-noise ratio and thus the temporal and spatial resolution in fluorescence imaging. It would be a breakthrough for many applications of fluorescence spectroscopy, which are unachievable up to now. So far, the only approach for diminishing the effect of photobleaching has been to enhance the photostability of an emitter. Here, we present a fundamentally new solution for increasing the number of photons emitted by a fluorophore. We show that, by exposing a single SiO2 nanoparticle to UV illumination, one can create new luminescent centers within this particle. By analogy with nanodiamonds, SiO2 nanoparticles can possess luminescent defects in their regular SiO2 structure. However, due to the much weaker chemical bonds, it is possible to generate new defects in SiO2 nanostructures using UV light. This allows for the reactivation of the nanoparticle's fluorescence after its photobleaching.

11.
Opt Express ; 24(9): 9429-45, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137558

RESUMO

We present a comprehensive theory of dead-time effects on Time-Correlated Single Photon Counting (TCSPC) as used for fluorescence lifetime measurements, and develop a correction algorithm to remove these artifacts. We apply this algorithm to fluorescence lifetime measurements as well as to Fluorescence Lifetime Imaging Microscopy (FLIM), where rapid data acquisition is necessarily connected with high count rates. There, dead-time effects cannot be neglected, and lead to distortions in the observed lifetime image. The algorithm is quite general and completely independent of the particular nature of the measured signal. It can also be applied to any other single-event counting measurement with detector and/or electronics dead-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA