Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 14(36): 3583-3597, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36043471

RESUMO

Cultivated ginseng (CG), transplanted ginseng (TG) and mountain cultivated ginseng (MCG) classified by the habitat type all belong to Panax ginseng and were reported to have similar types of secondary metabolites. Nonetheless, owing to the distinctly diverse habitats in which these ginseng types grow, their pharmacological effects differ. In the present study, an emerging analytical approach involving headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was established to effectively distinguish among CG, TG and MCG. First, the volatile components were analysed and identified by using the NIST library combined with measured retention indices (Kovats', RI), and a total of 78 volatile components were finally characterized, which included terpenes, alcohols, esters, aldehydes and alkynols. Furthermore, multivariate statistical approaches, principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) were subsequently utilized to screen for compounds of significance. Under optimized HS-SPME-GC-MS conditions, 12, 16, and 16 differential markers were screened in the CG-TG, CG-MCG and TG-MCG groups, respectively. Our study suggested that HS-SPME-GC-MS analysis combined with metabolomic analytical methods and chemometric techniques can be applied as potent tools to identify chemical marker candidates to distinguish CG, TG and MCG.


Assuntos
Panax , Compostos Orgânicos Voláteis , Aldeídos/análise , Aldeídos/metabolismo , Quimiometria , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas/métodos , Panax/química , Panax/metabolismo , Microextração em Fase Sólida/métodos , Terpenos/análise , Terpenos/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
2.
Molecules ; 24(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995808

RESUMO

Ginkgo biloba L., an ancient dioecious gymnosperm, is now cultivated worldwide for landscaping and medical purposes. A novel biflavonoid-amentoflavone 7''-O-ß-D-glucopyranoside (1)-and four known biflavonoids were isolated and identified from the male flowers of Ginkgo. The anti-proliferative activities of five biflavonoids were evaluated on different cancer lines. Bilobetin (3) and isoginkgetin (4) exhibited better anti-proliferative activities on different cancer lines. Their effects were found to be cell-specific and in a dose and time dependent manner for the most sensitive HeLa cells. The significant morphological changes validated their anticancer effects in a dose-dependent manner. They were capable of arresting the G2/M phase of the cell cycle, inducing the apoptosis of HeLa cells dose-dependently and activating the proapoptotic protein Bax and the executor caspase-3. Bilobetin (3) could also inhibit the antiapoptotic protein Bcl-2. These might be the mechanism underlying their anti-proliferation. In short, bilobetin (3) and isoginkgetin (4) might be the early lead compounds for new anticancer agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Flores/química , Ginkgo biloba/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Biflavonoides/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA