Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Methods Mol Biol ; 2751: 95-114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265712

RESUMO

Epigenetic regulation as a means for bacterial adaptation is receiving increasing interest in the last decade. Significant efforts have been directed towards understanding the mechanisms giving raise to phenotypic heterogeneity within bacterial populations and its adaptive relevance. Phenotypic heterogeneity mostly refers to phenotypic variation not linked to genetic differences nor to environmental stimuli. Recent findings on the relevance of phenotypic heterogeneity on some bacterial complex traits are causing a shift from traditional assays where bacterial phenotypes are defined by averaging population-level data, to single-cell analysis that focus on bacterial individual behavior within the population. Fluorescent labeling is a key asset for single-cell gene expression analysis using flow cytometry, fluorescence microscopy, and/or microfluidics.We previously described the generation of chromosome-located transcriptional gene fusions to fluorescent reporter genes using the model bacterial plant pathogen Pseudomonas syringae. These fusions allow researchers to follow variation in expression of the gene(s) of interest, without affecting gene function. In this report, we improve the analytic power of the method by combining such transcriptional fusions with constitutively expressed compatible fluorescent reporter genes integrated in a second, neutral locus of the bacterial chromosome. Constitutively expressed fluorescent reporters allow for the detection of all bacteria comprising a heterogeneous population, regardless of the level of expression of the concurrently monitored gene of interest, thus avoiding the traditional use of stains often incompatible with samples from complex contexts such as the leaf.


Assuntos
Epigênese Genética , Pseudomonas syringae , Análise da Expressão Gênica de Célula Única , Cromossomos Bacterianos , Microscopia de Fluorescência , Corantes
2.
J Exp Bot ; 74(19): 6052-6068, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37449766

RESUMO

Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.


Assuntos
MicroRNAs , Imunidade Vegetal , Imunidade Vegetal/genética , Plantas/metabolismo , MicroRNAs/genética , RNA Interferente Pequeno/genética , Nucleotídeos , Doenças das Plantas , Proteínas NLR/genética
3.
J Exp Bot ; 74(19): 6069-6088, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37429579

RESUMO

The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.


Assuntos
Bactérias , Plantas , Plantas/metabolismo , Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas NLR , Imunidade Vegetal , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
4.
J Vis Exp ; (188)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36282707

RESUMO

A plethora of pathogenic microorganisms constantly attack plants. The Pseudomonas syringae species complex encompasses Gram-negative plant-pathogenic bacteria of special relevance for a wide number of hosts. P. syringae enters the plant from the leaf surface and multiplies rapidly within the apoplast, forming microcolonies that occupy the intercellular space. The constitutive expression of fluorescent proteins by the bacteria allows for visualization of the microcolonies and monitoring of the development of the infection at the microscopic level. Recent advances in single-cell analysis have revealed the large complexity reached by clonal isogenic bacterial populations. This complexity, referred to as phenotypic heterogeneity, is the consequence of cell-to-cell differences in gene expression (not linked to genetic differences) among the bacterial community. To analyze the expression of individual loci at the single-cell level, transcriptional fusions to fluorescent proteins have been widely used. Under stress conditions, such as those occurring during colonization of the plant apoplast, P. syringae differentiates into distinct subpopulations based on the heterogeneous expression of key virulence genes (i.e., the Hrp type III secretion system). However, single-cell analysis of any given P. syringae population recovered from plant tissue is challenging due to the cellular debris released during the mechanical disruption intrinsic to the inoculation and bacterial extraction processes. The present report details a method developed to monitor the expression of P. syringae genes of interest at the single-cell level during the colonization of Arabidopsis and bean plants. The preparation of the plants and the bacterial suspensions used for inoculation using a vacuum chamber are described. The recovery of endophytic bacteria from infected leaves by apoplastic fluid extraction is also explained here. Both the bacterial inoculation and bacterial extraction methods are empirically optimized to minimize plant and bacterial cell damage, resulting in bacterial preparations optimal for microscopy and flow cytometry analysis.


Assuntos
Pseudomonas syringae , Sistemas de Secreção Tipo III , Pseudomonas syringae/genética , Sistemas de Secreção Tipo III/metabolismo , Análise de Célula Única , Doenças das Plantas/microbiologia , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
Artigo em Inglês | MEDLINE | ID: mdl-36078488

RESUMO

The intermediate respiratory care units (IRCUs) have a pivotal role managing escalation and de-escalation between the general wards and the intensive care units (ICUs). Since the COVID-19 pandemic began, the early detection of patients that could improve on non-invasive respiratory therapies (NRTs) in IRCUs without invasive approaches is crucial to ensure proper medical management and optimize limiting ICU resources. The aim of this study was to assess factors associated with survival, ICU admission and intubation likelihood in COVID-19 patients admitted to IRCUs. Observational retrospective study in consecutive patients admitted to the IRCU of a tertiary hospital from March 2020 to April 2021. Inclusion criteria: hypoxemic respiratory failure (SpO2 ≤ 94% and/or respiratory rate ≥ 25 rpm with FiO2 > 50% supplementary oxygen) due to acute COVID-19 infection. Demographic, comorbidities, clinical and analytical data, and medical and NRT data were collected at IRCU admission. Multivariate logistic regression models assessed factors associated with survival, ICU admission, and intubation. From 679 patients, 79 patients (12%) had an order to not do intubation. From the remaining 600 (88%), 81% survived, 41% needed ICU admission and 37% required intubation. In the IRCU, 51% required non-invasive ventilation (NIV group) and 49% did not (non-NIV group). Older age and lack of corticosteroid treatment were associated with higher mortality and intubation risk in the scheme, which could be more beneficial in severe forms. Initial NIV does not always mean worse outcomes.


Assuntos
COVID-19 , Ventilação não Invasiva , Insuficiência Respiratória , COVID-19/epidemiologia , COVID-19/terapia , Humanos , Unidades de Terapia Intensiva , Ventilação não Invasiva/métodos , Pandemias , Unidades de Cuidados Respiratórios , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/terapia , Taxa Respiratória , Estudos Retrospectivos
6.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35874602

RESUMO

Here we describe the generation of fluorescently labeled derivatives of the plant pathogen Pseudomonas syringae DC3000 and 1449b strains, with each derivative constitutively expressing either the enhanced green (eGFP), enhanced cyan (eCFP), or Discosoma sp. red (dsRED) fluorescent proteins. The fluorophore-expressing cassetes are stably located in a neutral locus in the chromosome, and its expression does not affect bacterial fitness, while allowing efficient detection by microscopy or flow cytometry. We have generated these strains as a complementary set of labeled strains to those previously generated in our laboratory, thus extending the range of applications.

7.
Pathogens ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215062

RESUMO

Porcine circovirus 3 (PCV-3) has been associated with several pig diseases. Despite the pathogenicity of this virus has not been completely clarified, reproductive disorders are consistently associated with its infection. The aim of the present work was to analyze the presence of PCV-3 DNA in tissues from pig fetuses from different gestational timepoints. The fetuses were obtained either from farms with no reproductive problems (NRP, n = 249; all of them from the last third of gestation) or from a slaughterhouse (S, n = 51; 49 of the second-third of gestation and 2 from the third one). Tissues collected included brain, heart, lung, kidney, and/or spleen. Overall, the frequency of detection of PCV-3 was significantly higher in fetuses from the last third of the gestation (69/251, 27.5%) when compared to those from the second-third (5/49, 10.2%), although the viral loads were not significantly different. Moreover, the frequency of detection in NRP fetuses (69/249, 27.7%) was significantly higher than in S ones (5/51, 9.8%). Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.

8.
J Exp Bot ; 72(20): 7316-7334, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34329403

RESUMO

Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/genética , Pseudomonas syringae
9.
New Phytol ; 231(3): 1138-1156, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960430

RESUMO

The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Bactérias , Doenças das Plantas/microbiologia , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Pseudomonas syringae
10.
Microorganisms ; 8(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485895

RESUMO

Minimally processed or fresh fruits and vegetables are unfortunately linked to an increasing number of food-borne diseases, such as salmonellosis. One of the relevant virulence factors during the initial phases of the infection process is the bacterial flagellum. Although its function is well studied in animal systems, contradictory results have been published regarding its role during plant colonization. In this study, we tested the hypothesis that Salmonella's flagellin plays a versatile function during the colonization of tomato plants. We have assessed the persistence in plant tissues of a Salmonella enterica wild type strain, and of a strain lacking the two flagellins, FljB and FliC. We detected no differences between these strains concerning their respective abilities to reach distal, non-inoculated parts of the plant. Analysis of flagellin expression inside the plant, at both the population and single cell levels, shows that the majority of bacteria down-regulate flagellin production, however, a small fraction of the population continues to express flagellin at a very high level inside the plant. This heterogeneous expression of flagellin might be an adaptive strategy to the plant environment. In summary, our study provides new insights on Salmonella adaption to the plant environment through the regulation of flagellin expression.

11.
Pathogens ; 9(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486429

RESUMO

The genus Circovirus includes several species and mostly causes asymptomatic infections. Porcine circovirus 2 (PCV-2) and, with increasing evidence, Porcine circovirus 3 (PCV-3), have been associated with different clinical conditions all over the world. In 2019, a new porcine circovirus (PCV-4) was identified from diseased animals in China. Because of the lessons learned from PCV-2 and PCV-3, it appears mandatory to investigate the actual distribution of this new virus and its potential association with clinical outcomes. To this purpose, an exploratory study to detect PCV-4 by molecular methods was performed in Italy and Spain by testing more than 300 samples of different types (serum and tissues), collected from both healthy and diseased pigs and wild boar as well. All samples, independently from the country, type, health status and host, tested PCV-4 negative. Therefore, no evidence of PCV-4 presence was found in Italy and Spain through this exploratory study. Considering the dense pig trade among European countries, its presence in the continent can similarly be considered unlikely. The reasons behind the restricted PCV-4 distribution compared to other porcine circoviruses will require further investigations. Careful surveillance might nevertheless be important since prompt recognition of PCV-4 would allow the implementation of effective countermeasures to prevent its spreading and potential economic losses.

12.
Waste Manag ; 105: 364-372, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114408

RESUMO

This study aims to assess composting efficiency and quality of compost through the study of the parameters of the Catalan Waste Agency (ARC) data-base by developing indicators useful for industrial sector. The study includes 17 composting plants for an 8-years period (2010-2017), the quantities of materials treated and generated in these plants: biowaste, yard trimmings, refuse and compost, as well as chemical characterization of compost: moisture, total organic matter, organic nitrogen, pH, electrical conductivity, self-heating test, pollutants and ammonium. Plant were sorted into 4 size classes depending on size capacity and into 4 technologies employed during thermophilic phase. Different indicators were developed related to improper fraction content, yard trimmings ratio, mass losses, compost production, refuse generation and plant saturation. The main average results indicate that improper fraction is 10%, process losses 68%, refuse generated 25% and saturation 79%. Differences were observed in size and technology; for instance, smaller plants presented lower improper content, refuse and saturation and higher losses while plants with turned windrows during decomposition presented higher improper, yard trimmings ratio and plants with vessel technology showed lower losses and higher saturation. Also, the compost quality is higher if the plant saturation and improper fraction are below 90% and 7%, respectively. The indicators were useful to assess the process and were related to the compost quality obtained.


Assuntos
Compostagem , Resíduos de Alimentos , Eliminação de Resíduos , Nitrogênio , Plantas , Solo
13.
Plant Methods ; 16: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206081

RESUMO

BACKGROUND: Small RNAs are sequence-dependent negative regulators of gene expression involved in many relevant plant processes such as development, genome stability, or stress response. Functional characterization of sRNAs in plants typically relies on the modification of the steady state levels of these molecules. State-of-the-art strategies to reduce plant sRNA levels include molecular tools such as Target Mimics (MIMs or TMs), Short Tandem Target Mimic (STTMs), or molecular SPONGES (SPs). Construction of these tools routinely involve many different molecular biology techniques, steps, and reagents rendering such processes expensive, time consuming, and difficult to implement, particularly high-throughput approaches. RESULTS: We have developed a vector and a cloning strategy that significantly reduces the number of steps required for the generation of MIMs against any given small RNA (sRNA). Our pGREEN-based binary expression vector (pGREEN-DLM100) contains the IPS1 gene from A. thaliana bisected by a ccdB cassette that is itself flanked by restriction sites for a type IIS endonuclease. Using a single digestion plus a sticky-end ligation step, the ccdB cassette that functions as a negative (counter) selection system is replaced by a pair of 28 nt self-annealing primers that provide specificity against the selected target miRNA/siRNA. The method considerably reduces the number of steps and the time required to generate the construct, minimizes the errors derived from long-range PCRs, bypasses bottlenecks derived from subcloning steps, and eliminates the need for any additional cloning technics and reagents, overall saving time and reagents. CONCLUSIONS: Our streamlined system guarantees a low cost, fast and efficient cloning process that it can be easily implemented into high-throughput strategies, since the same digested plasmid can be used for any given sRNA. We believe this method represents a significant technical improvement on state-of-the-art methods to facilitate the characterization of functional aspects of sRNA biology.

14.
Plant Methods ; 15: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809268

RESUMO

BACKGROUND: Plant responses triggered upon detection of an invading pathogen include the generation of a number of mobile signals that travel to distant tissues and determine an increased resistance in distal, uninfected tissues, a defense response known as systemic acquired resistance (SAR). The more direct means of measuring activation of SAR by a primary local infection is the quantification of pathogen multiplication in distal, systemic sites of secondary infection. However, while such assay provides a biologically relevant quantification of SAR, it is hampered by experimental variation, requiring many repetitions for reliable results. RESULTS: We propose a modification of the SAR assay based on the Arabidopsis-Pseudomonas syringae pathosystem exploiting the knowledge of source-sink relationships (orthostichies), known to centralize SAR-competency to upper leaves in the orthostichy of a lower primary infected leaf. Although many sources of variation such as genotypes of plant and pathogen, inoculation procedure, or environmental conditions are already taken into account to improve the performance of SAR assays, a strict leaf selection based on source-sink relationships is not usually implemented. We show how enacting this latter factor considerably improves data reliability, reducing the number of experimental repetitions for results. CONCLUSIONS: Direct selection of leaves for both primary and secondary inoculation exclusively within the orthostichy of the primary infected leaf is a key element on reducing the number of experimental repetitions required for statistically relevant SAR activation results.

15.
Front Plant Sci ; 9: 977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154802

RESUMO

Many type III-secreted effectors suppress plant defenses, but can also activate effector-triggered immunity (ETI) in resistant backgrounds. ETI suppression has been shown for a number of type III effectors (T3Es) and ETI-suppressing effectors are considered part of the arms race model for the co-evolution of bacterial virulence and plant defense. However, ETI suppression activities have been shown mostly between effectors not being naturally expressed within the same strain. Furthermore, evolution of effector families is rarely explained taking into account that selective pressure against ETI-triggering effectors may be compensated by ETI-suppressing effector(s) translocated by the same strain. The HopZ effector family is one of the most diverse, displaying a high rate of loss and gain of alleles, which reflects opposing selective pressures. HopZ effectors trigger defense responses in a variety of crops and some have been shown to suppress different plant defenses. Mutational changes in the sequence of ETI-triggering effectors have been proposed to result in the avoidance of detection by their respective hosts, in a process called pathoadaptation. We analyze how deleting or overexpressing HopZ1a and HopZ3 affects virulence of HopZ-encoding and non-encoding strains. We find that both effectors trigger immunity in their plant hosts only when delivered from heterologous strains, while immunity is suppressed when delivered from their native strains. We carried out screens aimed at identifying the determinant(s) suppressing HopZ1a-triggered and HopZ3-triggered immunity within their native strains, and identified several effectors displaying suppression of HopZ3-triggered immunity. We propose effector-mediated cross-suppression of ETI as an additional force driving evolution of the HopZ family.

16.
J Exp Bot ; 69(19): 4633-4649, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30053161

RESUMO

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidases/genética , Ligases/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Filogenia , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
17.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950424

RESUMO

Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.


Assuntos
Geminiviridae/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Solanum lycopersicum/metabolismo , Proteínas Virais/metabolismo , Geminiviridae/metabolismo , Solanum lycopersicum/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae/genética , Sumoilação , Ubiquitina/metabolismo , Replicação Viral
18.
Mol Plant Pathol ; 19(3): 537-551, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28120374

RESUMO

Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity reached by microbial populations within their hosts. Communities range from complex multispecies groups to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognized as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impact on defence responses, or how the presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent bacteria to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution.


Assuntos
Microscopia Confocal/métodos , Doenças das Plantas/microbiologia , Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Virulência
19.
Methods Mol Biol ; 1734: 183-199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288455

RESUMO

The last decade has seen significant effort directed toward the role of phenotypic heterogeneity in bacterial adaptation. Phenotypic heterogeneity usually refers to phenotypic diversity that takes place through nongenetic means, independently of environmental induced variation. Recent findings are changing how microbiologists analyze bacterial behavior, with a shift from traditional assays averaging large populations to single-cell analysis focusing on bacterial individual behavior. Fluorescence-based methods are often used to analyze single-cell gene expression by flow cytometry, fluorescence microscopy and/or microfluidics. Moreover, fluorescence reporters can also be used to establish where and when are the genes of interest expressed. In this chapter, we use the model bacterial plant pathogen Pseudomonas syringae to illustrate a method to generate chromosome-located transcriptional gene fusions to fluorescent reporter genes, without affecting the function of the gene of interest.


Assuntos
Cromossomos Bacterianos , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Pseudomonas syringae/genética , Proteínas Recombinantes de Fusão/genética , Análise de Célula Única , Alelos , Clonagem Molecular , Citometria de Fluxo , Microscopia de Fluorescência , Plasmídeos/genética , Pseudomonas syringae/metabolismo , Análise de Célula Única/métodos
20.
ACS Appl Mater Interfaces ; 9(27): 22121-22131, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28636319

RESUMO

Catanionic surfactant mixtures form a wide variety of organized assemblies and aggregates with improved physicochemical and biological properties. The green catanionic mixture NαNω-Bis(Nαcaproylarginine) α,ω-propyldiamide (C3(CA)2):Lichenysin (molar ratio 8:2) showed antimicrobial synergies against Yersinia enterocolitica, Bacillus subtilis, Escherichia coli O157:H7, and Candida albicans. Flow cytometry and viability studies indicated that this catanionic mixture increases the probability of Y. enterocolitica (38.2%) and B. subtilis (17.1%) cells entering a viable but nonculturable state. Zeta potential showed that one of the cationic charges of C3(CA)2 is neutralized by Lichenysin. An isotherm study demonstrated the formation of a stable aggregate between the two surfactants. The catanionic aggregate was able to interact with bacterial phospholipids. The lowest hemolysis (22.1 µM) was obtained with the catanionic mixture, although an irritant potential (0.70) was characterized. According to the therapeutic index, the C3(CA)2:Lichenysin mixture was the formulation least toxic to eukaryotic cells. Partial neutralization of C3(CA)2 by Lichenysin modified the mode of action that enhances the transition of bacterial cells into a viable but nonculturable state (VBNC) and improved the cell selectivity.


Assuntos
Tensoativos/química , Antibacterianos , Cátions , Surfactantes Pulmonares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA