Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(16): 3250-3268, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34672341

RESUMO

AIMS: Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown. METHODS AND RESULTS: Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage. ISG15 expression positively correlated with systolic and diastolic blood pressure and carotid intima-media thickness in human peripheral blood mononuclear cells. Consistently, Isg15 expression was enhanced in aorta from hypertension models and in angiotensin II (AngII)-treated vascular cells and macrophages. Proteomics revealed differential expression of proteins implicated in cardiovascular function, extracellular matrix and remodelling, and vascular redox state in aorta from AngII-infused ISG15-/- mice. Moreover, ISG15-/- mice were protected against AngII-induced hypertension, vascular stiffness, elastin remodelling, endothelial dysfunction, and expression of inflammatory and oxidative stress markers. Conversely, mice with excessive ISGylation (USP18C61A) show enhanced AngII-induced hypertension, vascular fibrosis, inflammation and reactive oxygen species (ROS) generation along with elastin breaks, aortic dilation, and rupture. Accordingly, human and murine abdominal aortic aneurysms showed augmented ISG15 expression. Mechanistically, ISG15 induces vascular ROS production, while antioxidant treatment prevented ISG15-induced endothelial dysfunction and vascular remodelling. CONCLUSION: ISG15 is a novel mediator of vascular damage in hypertension through oxidative stress and inflammation.


Assuntos
Aneurisma da Aorta Abdominal , Hipertensão , Camundongos , Humanos , Animais , Elastina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/metabolismo , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Espessura Intima-Media Carotídea , Estresse Oxidativo , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Oxirredução , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Inflamação , Camundongos Endogâmicos C57BL
2.
Cells ; 8(9)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540324

RESUMO

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-ß receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-ß receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-ß family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.


Assuntos
Endoglina/metabolismo , Galectina 3/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Proteínas Sanguíneas , Células CHO , Cricetulus , Galectinas , Células Endoteliais da Veia Umbilical Humana , Humanos , Análise Serial de Proteínas/métodos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA