Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(2): e0145922, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688684

RESUMO

The combination of the ß-lactam tebipenem and the ß-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Modelos Animais de Doenças , Pulmão , Testes de Sensibilidade Microbiana
2.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559163

RESUMO

Innovative cross-over study designs were explored in non-human primate (NHP) studies to determine the value of this approach for the evaluation of drug efficacy against tuberculosis (TB). Firstly, the pharmacokinetics (PK) of each of the drugs Isoniazid (H), Rifampicin (R), Pyrazinamide (Z) and Ethambutol (E), that are standardly used for the treatment of tuberculosis, was established in the blood of macaques after oral dosing as a monotherapy or in combination. Two studies were conducted to evaluate the pharmacokinetics and pharmacodynamics of different drug combinations using cross-over designs. The first employed a balanced, three-period Pigeon design with an extra period; this ensured that treatment by period interactions and carry-over could be detected comparing the treatments HR, HZ and HRZ using H37Rv as the challenge strain of Mycobacterium tuberculosis (M. tb). Although the design accounted for considerable variability between animals, the three regimens evaluated could not be distinguished using any of the alternative endpoints assessed. However, the degree of pathology achieved using H37Rv in the model during this study was less than expected. Based on these findings, a second experiment using a classical AB/BA design comparing HE with HRZ was conducted using the M. tb Erdman strain. More extensive pathology was observed, and differences in computerized tomography (CT) scores and bacteriology counts in the lungs were detected, although due to the small group sizes, clearer differences were not distinguished. Type 1 T helper (Th1) cell response profiles were characterized using the IFN-γ ELISPOT assay and revealed differences between drug treatments that corresponded to decreases in disease burden. Therefore, the studies performed support the utility of the NHP model for the determination of PK/PD of TB drugs, although further work is required to optimize the use of cross-over study designs.

3.
Sci Transl Med ; 14(643): eaaz6280, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507672

RESUMO

The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.


Assuntos
Mycobacterium tuberculosis , Pró-Fármacos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etionamida/química , Etionamida/farmacologia , Etionamida/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tuberculose/tratamento farmacológico
4.
ACS Infect Dis ; 8(3): 557-573, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35192346

RESUMO

Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of ß-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 ß-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of ß-lactams screened were active against Mtb, many without a ß-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Animais , Indústria Farmacêutica , Camundongos , SARS-CoV-2 , Universidades , beta-Lactamas/farmacologia
5.
ACS Infect Dis ; 6(5): 1098-1109, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196311

RESUMO

In the course of optimizing a novel indazole sulfonamide series that inhibits ß-ketoacyl-ACP synthase (KasA) of Mycobacterium tuberculosis, a mutagenic aniline metabolite was identified. Further lead optimization efforts were therefore dedicated to eliminating this critical liability by removing the embedded aniline moiety or modifying its steric or electronic environment. While the narrow SAR space against the target ultimately rendered this goal unsuccessful, key structural knowledge around the binding site of this underexplored target for TB was generated to inform future discovery efforts.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Compostos de Anilina/farmacologia , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Dano ao DNA , Mycobacterium tuberculosis/enzimologia
6.
Sci Rep ; 9(1): 19404, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852973

RESUMO

Hollow organs such as the lungs pose a considerable challenge for post-mortem imaging in preclinical research owing to their extremely low contrast and high structural complexity. The aim of our study was to enhance the contrast of tuberculosis lesions for their stratification by 3D x-ray-based virtual slicing. Organ samples were taken from five control and five tuberculosis-infected mice. Micro-Computed Tomography (CT) scans of the subjects were acquired in vivo (without contrast agent) and post-mortem (with contrast agent). The proposed contrast-enhancing technique consists of x-ray contrast agent uptake (silver nitrate and iodine) by immersion. To create the histology ground-truth, the CT scan of the paraffin block guided the sectioning towards specific planes of interest. The digitalized histological slides reveal the presence, extent, and appearance of the contrast agents in lung structures and organized aggregates of immune cells. These findings correlate with the contrast-enhanced micro-CT slice. The abnormal densities in the lungs due to tuberculosis disease are concentrated in the right tail of the lung intensity histograms. The increase in the width of the right tail (~376%) indicates a contrast enhancement of the details of the abnormal densities. Postmortem contrast agents enhance the x-ray attenuation in tuberculosis lesions to allow 3D visualization by polychromatic x-ray CT, providing an advantageous tool for virtual slicing of whole lungs. The proposed contrast-enhancing technique combined with computational methods and the diverse micro-CT modalities will open the doors to the stratification of lesion types associated with infectious diseases.


Assuntos
Técnicas Histológicas , Pulmão/diagnóstico por imagem , Tuberculose Pulmonar/diagnóstico , Animais , Autopsia , Meios de Contraste/farmacologia , Tomografia Computadorizada Quadridimensional , Humanos , Imageamento Tridimensional , Pulmão/ultraestrutura , Camundongos , Radiografia , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/patologia , Microtomografia por Raio-X
7.
ACS Med Chem Lett ; 10(10): 1423-1429, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620228

RESUMO

In this study, a series of 49 five-membered heterocyclic compounds containing either a pyridine- or a pyrrole-type nitrogen were synthesized and tested against Mycobacterium tuberculosis. Among them, only the 1,3,5-trisubstituted pyrazoles 5-49 exhibited minimum inhibitory concentration values in the low micromolar range, and some also exhibited an improved physicochemical profile without cytotoxic effects. Three pyrazoles were subjected to an animal tuberculosis efficacy model, and compound 6 induced a statistically significant difference in lung bacterial counts compared with untreated mice. Moreover, to determine the target of this series, resistors were generated, and whole genome sequencing revealed mutations in the mmpL3 gene.

8.
J Med Chem ; 61(24): 11327-11340, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30457865

RESUMO

Society urgently needs new, effective medicines for the treatment of tuberculosis. To kick-start the required hit-to-lead campaigns, the libraries of pharmaceutical companies have recently been evaluated for starting points. The GlaxoSmithKline (GSK) library yielded many high-quality hits, and the associated data were placed in the public domain to stimulate engagement by the wider community. One such series, the spiro compounds, are described here. The compounds were explored by a combination of traditional in-house research and open source methods. The series benefits from a particularly simple structure and a short associated synthetic chemistry route. Many members of the series displayed striking potency and low toxicity, and highly promising in vivo activity in a mouse model was confirmed with one of the analogues. Ultimately the series was discontinued due to concerns over safety, but the associated data remain public domain, empowering others to resume the series if the perceived deficiencies can be overcome.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Compostos de Espiro/síntese química , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Administração Intravenosa , Administração Oral , Animais , Antituberculosos/efeitos adversos , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1/antagonistas & inibidores , Feminino , Coração/efeitos dos fármacos , Humanos , Dose Máxima Tolerável , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Coelhos
9.
J Med Chem ; 61(15): 6592-6608, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944372

RESUMO

With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino-thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv. The design, synthesis, and structure-activity relationships of a range of analogues around the confirmed actives are described. Optimized leads with potent whole cell activity against H37Rv, no cytotoxicity flags, and in vivo efficacy in an acute murine model of infection are described. Mode-of-action studies suggest that the novel scaffold targets QcrB, a subunit of the menaquinol cytochrome c oxidoreductase, part of the bc1-aa3-type cytochrome c oxidase complex that is responsible for driving oxygen-dependent respiration.


Assuntos
Citocromos c/metabolismo , Morfolinas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Tiofenos/química , Tiofenos/farmacologia , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Chlorocebus aethiops , Camundongos , Relação Estrutura-Atividade , Tiofenos/farmacocinética , Tiofenos/toxicidade , Células Vero
10.
J Med Chem ; 60(19): 8011-8026, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28953378

RESUMO

There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC50 = 0.20 µM) and in vitro antitubercular activity (Mtb H37Rv MIC = 0.08 µM). Additionally, it is highly selective for the Mtb LeuRS enzyme with IC50 of >300 µM and 132 µM for human mitochondrial LeuRS and human cytoplasmic LeuRS, respectively. In addition, it exhibits remarkable PK profiles and efficacy against Mtb in mouse TB infection models with superior tolerability over initial leads. This compound has been progressed to clinical development for the treatment of tuberculosis.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Compostos de Boro/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/farmacocinética , Compostos de Boro/síntese química , Compostos de Boro/farmacocinética , Descoberta de Drogas , Inibidores Enzimáticos/farmacocinética , Feminino , Compostos Heterocíclicos com 2 Anéis/síntese química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Sci Rep ; 7(1): 9430, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842600

RESUMO

Drug discovery efforts against the pathogen Mycobacterium tuberculosis (Mtb) have been advanced through phenotypic screens of extensive compound libraries. Such a screen revealed sulfolane 1 and indoline-5-sulfonamides 2 and 3 as potent inhibitors of mycobacterial growth. Optimization in the sulfolane series led to compound 4, which has proven activity in an in vivo murine model of Mtb infection. Here we identify the target and mode of inhibition of these compounds based on whole genome sequencing of spontaneous resistant mutants, which identified mutations locating to the essential α- and ß-subunits of tryptophan synthase. Over-expression studies confirmed tryptophan synthase as the biological target. Biochemical techniques probed the mechanism of inhibition, revealing the mutant enzyme complex incurs a fitness cost but does not prevent inhibitor binding. Mapping of the resistance conferring mutations onto a low-resolution crystal structure of Mtb tryptophan synthase showed they locate to the interface between the α- and ß-subunits. The discovery of anti-tubercular agents inhibiting tryptophan synthase highlights the therapeutic potential of this enzyme and draws attention to the prospect of other amino acid biosynthetic pathways as future Mtb drug targets.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Triptofano Sintase/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Mycobacterium/genética , Conformação Proteica , Relação Estrutura-Atividade , Tiofenos/farmacologia , Triptofano Sintase/química , Triptofano Sintase/metabolismo
12.
J Pharmacokinet Pharmacodyn ; 44(2): 133-141, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28205025

RESUMO

The Multistate Tuberculosis Pharmacometric (MTP) model, a pharmacokinetic-pharmacodynamic disease model, has been used to describe the effects of rifampicin on Mycobacterium tuberculosis (M. tuberculosis) in vitro. The aim of this work was to investigate if the MTP model could be used to describe the rifampicin treatment response in an acute tuberculosis mouse model. Sixty C57BL/6 mice were intratracheally infected with M. tuberculosis H37Rv strain on Day 0. Fifteen mice received no treatment and were sacrificed on Days 1, 9 and 18 (5 each day). Twenty-five mice received oral rifampicin (1, 3, 9, 26 or 98 mg·kg-1·day-1; Days 1-8; 5 each dose level) and were sacrificed on Day 9. Twenty mice received oral rifampicin (30 mg·kg-1·day-1; up to 8 days) and were sacrificed on Days 2, 3, 4 and 9 (5 each day). The MTP model was linked to a rifampicin population pharmacokinetic model to describe the change in colony forming units (CFU) in the lungs over time. The transfer rates between the different bacterial states were fixed to estimates from in vitro data. The MTP model described well the change in CFU over time after different exposure levels of rifampicin in an acute tuberculosis mouse model. Rifampicin significantly inhibited the growth of fast-multiplying bacteria and stimulated the death of fast- and slow-multiplying bacteria. The data did not support an effect of rifampicin on non-multiplying bacteria possibly due to the short duration of the study. The pharmacometric modelling framework using the MTP model can be used to perform investigations and predictions of the efficacy of anti-tubercular drugs against different bacterial states.


Assuntos
Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Rifampina/farmacocinética , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
13.
Nat Commun ; 7: 12581, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581223

RESUMO

Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis ß-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related ß-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Indazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Sulfonamidas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Farmacorresistência Bacteriana/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle
14.
Antimicrob Agents Chemother ; 60(10): 6271-80, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503647

RESUMO

The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.


Assuntos
Antituberculosos/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Administração Oral , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Antituberculosos/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Inibidores da Síntese de Proteínas/administração & dosagem , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacocinética , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Células Vero
15.
Nat Microbiol ; 1: 15006, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27571973

RESUMO

Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos Essenciais/metabolismo , Genes Essenciais , Mycobacterium tuberculosis/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Camundongos , Testes de Sensibilidade Microbiana , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Tuberculose/microbiologia , Tuberculose/patologia , Técnicas do Sistema de Duplo-Híbrido
16.
ChemMedChem ; 11(7): 687-701, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26934341

RESUMO

Isoniazid (INH) remains one of the cornerstones of antitubercular chemotherapy for drug-sensitive strains of M. tuberculosis bacteria. However, the increasing prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains containing mutations in the KatG enzyme, which is responsible for the activation of INH into its antitubercular form, have rendered this drug of little or no use in many cases of drug-resistant tuberculosis. Presented herein is a novel family of antitubercular direct NADH-dependent 2-trans enoyl-acyl carrier protein reductase (InhA) inhibitors based on an N-benzyl-4-((heteroaryl)methyl)benzamide template; unlike INH, these do not require prior activation by KatG. Given their direct InhA target engagement, these compounds should be able to circumvent KatG-related resistance in the clinic. The lead molecules were shown to be potent inhibitors of InhA and showed activity against M. tuberculosis bacteria. This new family of inhibitors was found to be chemically tractable, as exemplified by the facile synthesis of analogues and the establishment of structure-activity relationships. Furthermore, a co-crystal structure of the initial hit with the enzyme is disclosed, providing valuable information toward the design of new InhA inhibitors for the treatment of MDR/XDR tuberculosis.


Assuntos
Antituberculosos/farmacologia , Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibinas/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/síntese química , Antituberculosos/química , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Inibinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Tuberculose Resistente a Múltiplos Medicamentos/enzimologia
17.
Antimicrob Agents Chemother ; 59(8): 4997-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25987618

RESUMO

We report here a dehydropeptidase-deficient murine model of tuberculosis (TB) infection that is able to partially uncover the efficacy of marketed broad-spectrum ß-lactam antibiotics alone and in combination. Reductions of up to 2 log CFU in the lungs of TB-infected mice after 8 days of treatment compared to untreated controls were obtained at blood drug concentrations and time above the MIC (T>MIC) below clinically achievable levels in humans. These findings provide evidence supporting the potential of ß-lactams as safe and mycobactericidal components of new combination regimens against TB with or without resistance to currently used drugs.


Assuntos
Antibacterianos/farmacologia , Dipeptidases/deficiência , Infecções Respiratórias/tratamento farmacológico , Tuberculose/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Proteínas Ligadas por GPI/deficiência , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Tuberculose/metabolismo , Tuberculose/microbiologia
18.
Antimicrob Agents Chemother ; 59(4): 1868-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583730

RESUMO

One way to speed up the TB drug discovery process is to search for antitubercular activity among compound series that already possess some of the key properties needed in anti-infective drug discovery, such as whole-cell activity and oral absorption. Here, we present MGIs, a new series of Mycobacterium tuberculosis gyrase inhibitors, which stem from the long-term efforts GSK has dedicated to the discovery and development of novel bacterial topoisomerase inhibitors (NBTIs). The compounds identified were found to be devoid of fluoroquinolone (FQ) cross-resistance and seem to operate through a mechanism similar to that of the previously described NBTI GSK antibacterial drug candidate. The remarkable in vitro and in vivo antitubercular profiles showed by the hits has prompted us to further advance the MGI project to full lead optimization.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Animais , Descoberta de Drogas , Feminino , Fluoroquinolonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium bovis/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
19.
ACS Infect Dis ; 1(12): 604-14, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26771003

RESUMO

Antifolates are widely used to treat several diseases but are not currently used in the first-line treatment of tuberculosis, despite evidence that some of these molecules can target Mycobacterium tuberculosis (Mtb) bacilli in vitro. To identify new antifolate candidates for animal-model efficacy studies of tuberculosis, we paired knowledge and tools developed in academia with the infrastructure and chemistry resources of a large pharmaceutical company. Together we curated a focused library of 2508 potential antifolates, which were then tested for activity against live Mtb. We identified 210 primary hits, confirmed the on-target activity of potent compounds, and now report the identification and characterization of 5 hit compounds, representative of 5 different chemical scaffolds. These antifolates have potent activity against Mtb and represent good starting points for improvement that could lead to in vivo efficacy studies.

20.
J Med Chem ; 57(4): 1276-88, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24450589

RESUMO

Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA