Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Protein Sci ; 33(9): e5103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39145418

RESUMO

Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Mutação , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/enzimologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Humanos , COVID-19/virologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Estabilidade Proteica , Ligação Proteica
2.
ChemMedChem ; : e202400367, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140451

RESUMO

The use of Fpocket and virtual screening techniques enabled us to identify potential allosteric druggable pockets within the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Of the compounds screened, compound 1 was identified as a promising inhibitor, lowering a SARS-CoV-2 RdRp activity to 57% in an enzymatic assay at 10 µM concentration. The structure of compound 1 was subsequently optimized in order to preserve or enhance inhibitory activity. This involved the substitution of problematic ester and aromatic nitro groups with more inert functionalities. The N,N'-diphenylurea scaffold with two NH groups was identified as essential for the compound's activity but also exhibited high toxicity in Calu-3 cells. To address this issue, a scaffold hopping approach was employed to replace the urea core with potentially less toxic urea isosteres. This approach yielded several structural analogues with notable activity, specifically 2,2'-bisimidazol (in compound 55 with residual activity RA = 42%) and (1H-imidazol-2-yl)urea (in compounds 59 and 60, with RA = 50 and 28%, respectively). Despite these advances, toxicity remained a major concern. These compounds represent a promising starting point for further structure-activity relationship studies of allosteric inhibitors of SARS-CoV-2 RdRp, with the goal of reducing their cytotoxicity and improving aqueous solubility.

3.
Inorg Chem ; 63(9): 4419-4428, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364266

RESUMO

The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.


Assuntos
Adenocarcinoma , Iodo , Fotoquimioterapia , Animais , Camundongos , Molibdênio/química , Fotoquimioterapia/métodos , Polietilenoglicóis
4.
Chemosphere ; 351: 141162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218235

RESUMO

The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.


Assuntos
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Pandemias , Prevalência , RNA Viral
5.
Sci Total Environ ; 902: 166110, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567313

RESUMO

Monkeypox virus (Mpxv) is a dsDNA virus that has become a global concern for human health in 2022. As both infected people and non-human hosts can shed the virus from their skin, faeces, urine and other body fluids, and the resulting sewage contains viral load representative of the whole population, it is highly promising to detect the spread of monkeypox virus in municipal wastewater. We established a methodology for sewage-based monitoring of Mpxv in Prague and analysed samples (n = 24) already early August-October of 2022 in a municipality with 1.4 million inhabitants that only reported 29 cumulative cases in this period. We isolated Mpxv DNA with the Wizard Enviro Total Nucleic Acid Kit, and thereafter detected Mpxv DNA using the EliGene® Monkeypox RT-PCR Kit. Prague wastewater was positive for Mpxv (in total 9 positive samples in periods with 1-9 new cases per week, coinciding with a weekly incidence of 0.07-0.64 per 100,000 inhabitants. The method for confirmation of wastewater positivity via semi-nested PCR and Sanger sequencing was successfully confirmed on positive controls including Mpxv particles and Mpxv-positive wastewater from the Netherlands. However, for Prague wastewater samples, amplification of Mpxv DNA via semi-semi-nested PCR was unsuccessful. This was probably due to extremely low case count, leading to the amplification of non-target bacterial DNA. Compared to other studies with much higher Mpxv prevalence, we show the outstanding sensitivity of our approach for monitoring the spread of monkeypox using wastewater.


Assuntos
Mpox , Humanos , Mpox/diagnóstico , Águas Residuárias , DNA Viral/genética , Esgotos , Monkeypox virus/genética
6.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134237

RESUMO

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidores Enzimáticos/química , Cristalografia
7.
J Biol Chem ; 298(11): 102585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223838

RESUMO

Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas não Estruturais Virais/metabolismo , RNA Viral/metabolismo , Capsídeo/metabolismo
8.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685361

RESUMO

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

10.
Sci Rep ; 12(1): 8704, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610319

RESUMO

Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.


Assuntos
Síndrome Nefrótica , Proteínas WT1 , Criança , DNA/uso terapêutico , Resistência a Medicamentos , Humanos , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Esteroides/farmacologia , Proteínas WT1/genética , Proteínas WT1/metabolismo
11.
J Mater Chem B ; 10(17): 3303-3310, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380154

RESUMO

X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.


Assuntos
Carcinoma , Nanopartículas , Fotoquimioterapia , Neoplasias da Próstata , Radiossensibilizantes , Animais , Humanos , Masculino , Camundongos , Molibdênio/farmacologia , Fotoquimioterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Oxigênio Singlete , Raios X
12.
Inorg Chem ; 61(12): 5076-5083, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35293732

RESUMO

The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.


Assuntos
Iodo , Molibdênio , Membrana Celular , Células HeLa , Humanos , Iodo/farmacologia , Ligantes , Molibdênio/farmacologia
13.
Water Res ; 216: 118343, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358873

RESUMO

Many reports have documented that the presence of SARS-CoV-2 RNA in the influents of municipal wastewater treatment plants (WWTP) correlates with the actual epidemic situation in a given city. However, few data have been reported thus far on measurements upstream of WWTPs, i.e. throughout the sewer network. In this study, the monitoring of the presence of SARS-CoV-2 RNA in Prague wastewater was carried out at selected locations of the Prague sewer network from August 2020 through May 2021. Various locations such as residential areas of various sizes, hospitals, city center areas, student dormitories, transportation hubs (airport, bus terminal), and commercial areas were monitored together with four of the main Prague sewers. The presence of SARS-CoV-2 RNA was determined by reverse transcription - multiplex quantitative polymerase chain reaction (RT-mqPCR) after the precipitation of nucleic acids with PEG 8,000 and RNA isolation with TRIzol™ Reagent. The number of copies of the gene encoding SARS-CoV-2 nucleocapsid (N1) per liter of wastewater was compared with the number of officially registered COVID-19 cases in Prague. Although the data obtained by sampling wastewater from the major Prague sewers were more consistent than those obtained from the small sewers, the correlation between wastewater-based and clinical-testing data was also good for the residential areas with more than 7,000 registered inhabitants. It was shown that monitoring SARS-CoV-2 RNA in wastewater sampled from small sewers could identify isolated occurrences of COVID-19-positive cases in local neighborhoods. This can be very valuable while tracking COVID-19 hotspots within large cities.


Assuntos
COVID-19 , Purificação da Água , COVID-19/epidemiologia , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias
14.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959692

RESUMO

Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.

15.
Viruses ; 13(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34960720

RESUMO

Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.


Assuntos
Fármacos Anti-HIV/farmacologia , Fulerenos/metabolismo , Fulerenos/farmacologia , HIV-1/efeitos dos fármacos , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Empacotamento do Genoma Viral/efeitos dos fármacos , Fármacos Anti-HIV/metabolismo , Genoma Viral/efeitos dos fármacos , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Ligação Proteica , Transcrição Reversa , Vírion/metabolismo , Desenvelopamento do Vírus/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
16.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639130

RESUMO

Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.


Assuntos
Acidose/fisiopatologia , Caprilatos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Sulfetos/farmacologia , Microambiente Tumoral , Adaptação Fisiológica , Antineoplásicos/farmacologia , Metabolismo Energético , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Células Tumorais Cultivadas
17.
Biomedicines ; 9(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34572290

RESUMO

Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 µM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 µM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.

18.
Viruses ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477490

RESUMO

The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Polieletrólitos/química , Retroviridae/fisiologia , Montagem de Vírus , Alpharetrovirus/fisiologia , Animais , Betaretrovirus/fisiologia , Células Cultivadas , Gammaretrovirus/fisiologia , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Polieletrólitos/metabolismo , Retroviridae/ultraestrutura , Vírion
19.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291486

RESUMO

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas do Esmalte Dentário/química , Humanos , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Ligação Proteica , Isoformas de Proteínas , Multimerização Proteica , Análise Espectral , Temperatura
20.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727872

RESUMO

Proper assembly and disassembly of both immature and mature HIV-1 hexameric lattices are critical for successful viral replication. These processes are facilitated by several host-cell factors, one of which is myo-inositol hexaphosphate (IP6). IP6 participates in the proper assembly of Gag into immature hexameric lattices and is incorporated into HIV-1 particles. Following maturation, IP6 is also likely to participate in stabilizing capsid protein-mediated mature hexameric lattices. Although a structural-functional analysis of the importance of IP6 in the HIV-1 life cycle has been reported, the effect of IP6 has not yet been quantified. Using two in vitro methods, we quantified the effect of IP6 on the assembly of immature-like HIV-1 particles, as well as its stabilizing effect during disassembly of mature-like particles connected with uncoating. We analyzed a broad range of molar ratios of protein hexamers to IP6 molecules during assembly and disassembly. The specificity of the IP6-facilitated effect on HIV-1 particle assembly and stability was verified by K290A, K359A, and R18A mutants. In addition to IP6, we also tested other polyanions as potential assembly cofactors or stabilizers of viral particles.IMPORTANCE Various host cell factors facilitate critical steps in the HIV-1 replication cycle. One of these factors is myo-inositol hexaphosphate (IP6), which contributes to assembly of HIV-1 immature particles and helps maintain the well-balanced metastability of the core in the mature infectious virus. Using a combination of two in vitro methods to monitor assembly of immature HIV-1 particles and disassembly of the mature core-like structure, we quantified the contribution of IP6 and other small polyanion molecules to these essential steps in the viral life cycle. Our data showed that IP6 contributes substantially to increasing the assembly of HIV-1 immature particles. Additionally, our analysis confirmed the important role of two HIV-1 capsid lysine residues involved in interactions with IP6. We found that myo-inositol hexasulphate also stabilized the HIV-1 mature particles in a concentration-dependent manner, indicating that targeting this group of small molecules may have therapeutic potential.


Assuntos
HIV-1/química , Polímeros/química , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , HIV-1/genética , Mutação de Sentido Incorreto , Polieletrólitos , Relação Estrutura-Atividade , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA