Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 313: 122758, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39182328

RESUMO

The current opioid epidemic is one of the most profound public health crises facing the United States. Despite that it has been under the spotlight for years, available treatments for opioid use disorder (OUD) and overdose are limited to opioid receptor ligands such as the agonist methadone and the overdose reversing drugs such as naloxone. Vaccines are emerging as an alternative strategy to combat OUD and prevent relapse and overdose. Most vaccine candidates consist of a conjugate structure containing the target opioid attached to an immunogenic carrier protein. However, conjugate vaccines have demonstrated some intrinsic shortfalls, such as fast degradation and poor recognition by immune cells. To overcome these challenges, we proposed a lipid-PLGA hybrid nanoparticle (hNP)-based vaccine against oxycodone (OXY), which is one of the most frequently misused opioid analgesics. The hNP-based OXY vaccine exhibited superior immunogenicity and pharmacokinetic efficacy in comparison to its conjugate vaccine counterpart. Specifically, the hNP-based OXY vaccine formulated with subunit keyhole limpet hemocyanin (sKLH) as the carrier protein and aluminum hydroxide (Alum) as the adjuvant (OXY-sKLH-hNP(Alum)) elicited the most potent OXY-specific antibody response in mice. The induced antibodies efficiently bound with OXY molecules in blood and suppressed their entry into the brain. In a following dose-response study, OXY-sKLH-hNP(Alum) equivalent to 60 µg of sKLH was determined to be the most promising OXY vaccine candidate moving forward. This study provides evidence that hybrid nanoparticle-based vaccines may be superior vaccine candidates than conjugate vaccines and will be beneficial in treating those suffering from OUD.


Assuntos
Nanopartículas , Oxicodona , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Oxicodona/farmacocinética , Oxicodona/imunologia , Oxicodona/administração & dosagem , Oxicodona/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Lipídeos/química , Camundongos , Feminino , Vacinas/farmacocinética , Vacinas/imunologia , Vacinas/administração & dosagem , Camundongos Endogâmicos BALB C
2.
J Pharmacol Exp Ther ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443144

RESUMO

The Neuropeptide S receptor (NPSR) has been identified as a potential therapeutic target for anxiety and post-traumatic stress disorder. Central administration of Neuropeptide S (NPS) in male mice produces anxiolytic-like effects, hyperlocomotion, and memory enhancement. Currently, the literature is limited in the number of studies investigating the effects of NPS in female test subjects despite females facing a higher prevalence of anxiety-related pathology, as well as greater risk for adverse effects while taking psychoactive drugs. Moreover, no previous studies have considered the influence of estrous cycle on the effects of NPS. The current study investigates whether NPS-mediated behavioral phenotypes seen in males translate to females, and whether they are affected by estrous cycle stage. Female C57BL/6NCr mice were intracerebroventricularly (ICV) cannulated and underwent behavioral paradigms to test locomotion, anxiety, and memory. Estrous cycle stage was determined through examination of vaginal cytology. Our results provide evidence that NPS-mediated behaviors are influenced by the estrous cycle. Administration of NPS decreased anxiety-like behaviors more robustly when the female mice were in high estrogen stages of the estrous cycle. Therefore, the desired anxiolytic-like effects of targeting the NPSR are intact in female mice. However, these effects may to be influenced by the stage of the estrous cycle. The NPSR remains a strong potential drug target for new anxiolytic compounds and based on our initial observations further studies exploring the interaction of estrous cycle and the NPS-system are warranted. Significance Statement The neuropeptide S (NPS) receptor has been identified as a potential target for treating anxiety, a condition that is most prevalent in females. Therefore, the potential interaction of estrous cycle with the NPS-system described in the current study is an important first step in understanding the function of the NPS-system in females.

3.
Nat Commun ; 15(1): 7675, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227594

RESUMO

Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.


Assuntos
Androgênios , Proliferação de Células , Neoplasias da Próstata , Receptores Androgênicos , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Androgênios/metabolismo , Androgênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Multimerização Proteica/efeitos dos fármacos , Animais
4.
Neuropharmacology ; 241: 109743, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820934

RESUMO

Neuropeptide S (NPS) is a neuromodulatory peptide that acts via a G protein-coupled receptor. Centrally administered NPS suppresses anxiety-like behaviors in rodents while producing a paradoxical increase in arousal. In addition, NPS increases drug-seeking behavior when administered during cue-induced reinstatement. Conversely, an NPS receptor (NPSR) antagonist, RTI-118, decreases cocaine-seeking behavior. A biased NPSR ligand, RTI-263, produces anxiolytic-like effects and has memory-enhancing effects similar to those of NPS but without the increase in arousal. In the present study, we show that RTI-263 decreased cocaine seeking by both male and female rats during cue-induced reinstatement. However, RTI-263 did not modulate the animals' behaviors during natural reward paradigms, such as palatable food intake, feeding during a fasting state, and cue-induced reinstatement of sucrose seeking. Therefore, NPSR biased agonists are a potential pharmacotherapy for substance use disorder because of the combined benefits of decreased drug seeking and the suppression of anxiety.


Assuntos
Ansiolíticos , Cocaína , Neuropeptídeos , Feminino , Ratos , Masculino , Animais , Cocaína/farmacologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Receptores Acoplados a Proteínas G , Comportamento Animal , Comportamento de Procura de Droga , Neuropeptídeos/farmacologia , Autoadministração , Sinais (Psicologia) , Extinção Psicológica
5.
Bioorg Med Chem Lett ; 93: 129430, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543275

RESUMO

Partial agonists of peripheral cannabinoid receptors (CBRs) have potential therapeutic applications in several medical conditions. However, (-)-trans-Δ9-tetrahydrocannabinol (THC), the principal active component of marijuana, which is a partial agonist of CB1 and CB2 penetrates the central nervous system (CNS) and produces adverse effects. Peripherally restricted partial agonists of CBRs, particularly of CB1, can be used to treat illnesses safely and effectively with a better therapeutic index. Here, we report on our efforts to synthesize pyrazole partial CBR agonists with peripheral selectivity, resulting in lead compound 40. This compound is a potent partial agonist of CB1 with âˆ¼ 5-fold higher plasma biodistribution over brain and represents an early lead for optimization.


Assuntos
Agonistas de Receptores de Canabinoides , Dronabinol , Agonistas de Receptores de Canabinoides/farmacologia , Distribuição Tecidual , Pirazóis/farmacologia , Receptores de Canabinoides , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
6.
Eur J Med Chem ; 254: 115309, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054561

RESUMO

Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.


Assuntos
Neuralgia , Receptores Opioides , Animais , Ratos , Analgésicos Opioides/química , Dicetopiperazinas , Ligantes , Receptores Opioides kappa , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/química
7.
Structure ; 31(1): 20-32.e5, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513069

RESUMO

Opioid-related fatal overdoses have reached epidemic proportions. Because existing treatments for opioid use disorders offer limited long-term protection, accelerating the development of newer approaches is critical. Monoclonal antibodies (mAbs) are an emerging treatment strategy that targets and sequesters selected opioids in the bloodstream, reducing drug distribution across the blood-brain barrier, thus preventing or reversing opioid toxicity. We previously identified a series of murine mAbs with high affinity and selectivity for oxycodone, morphine, fentanyl, and nicotine. To determine their binding mechanism, we used X-ray crystallography to solve the structures of mAbs bound to their respective targets, to 2.2 Å resolution or higher. Structural analysis showed a critical convergent hydrogen bonding mode that is dependent on a glutamic acid residue in the mAbs' heavy chain and a tertiary amine of the ligand. Characterizing drug-mAb complexes represents a significant step toward rational antibody engineering and future manufacturing activities to support clinical evaluation.


Assuntos
Analgésicos Opioides , Nicotina , Camundongos , Animais , Analgésicos Opioides/uso terapêutico , Anticorpos Monoclonais/química , Oxicodona/uso terapêutico , Morfina/uso terapêutico
8.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080443

RESUMO

Selective modulation of peripheral cannabinoid receptors (CBRs) has potential therapeutic applications in medical conditions, including obesity, diabetes, liver diseases, GI disorders and pain. While there have been considerable efforts to produce selective antagonists or full agonists of CBRs, there has been limited reports on the development of partial agonists. Partial agonists targeting peripheral CBRs may have desirable pharmacological profiles while not producing centrally mediated dissociative effects. Bayer reported that BAY 59-3074 is a CNS penetrant partial agonist of both CB1 and CB2 receptors with efficacy in rat models of neuropathic and inflammatory pain. In this report, we demonstrate our efforts to synthesize analogs that would favor peripheral selectivity, while maintaining partial agonism of CB1. Our efforts led to the identification of a novel compound, which is a partial agonist of the human CB1 (hCB1) receptor with vastly diminished brain exposure compared to BAY 59-3074.


Assuntos
Agonistas de Receptores de Canabinoides , Dor , Alcanossulfonatos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Humanos , Nitrilas , Dor/tratamento farmacológico , Ratos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de Canabinoides , Relação Estrutura-Atividade
9.
ACS Omega ; 7(19): 16584-16592, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601290

RESUMO

The ongoing public health emergency of opioid use disorders (OUD) and overdose in the United States is largely driven by fentanyl and its related analogues and has resulted in over 75 673 deaths in 2021. Immunotherapeutics such as vaccines have been investigated as a potential interventional strategy complementary to current pharmacotherapies to reduce the incidence of OUD and opioid-related overdose. Given the importance of targeting structurally distinct fentanyl analogues, this study compared a previously established lead conjugate vaccine (F1-CRM) to a series of novel vaccines incorporating haptens derived from alfentanil and acetylfentanyl (F8, 9a, 9b, 10), and evaluated their efficacy against drug-induced pharmacological effects in rats. While no vaccine tested provided significant protection against alfentanil, lead formulations were effective in reducing antinociception, respiratory depression, and bradycardia elicited by fentanyl, sufentanil, and acetylfentanyl. Compared with control, vaccination with F1-CRM also reduced drug levels in the brain of rats challenged with lethal doses of fentanyl. These data further support investigation of F1-CRM as a candidate vaccine against fentanyl and selected analogues.

10.
ACS Pharmacol Transl Sci ; 5(5): 331-343, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592436

RESUMO

Drug-related fatal overdoses have significantly increased in the past decade due to the widespread availability of illicit fentanyl and other potent synthetic opioids such as carfentanil. Deliberate or accidental consumption or exposure to carfentanil, fentanyl, and their mixture induces respiratory depression and bradycardia that can be difficult to reverse with the opioid receptor antagonist naloxone. Vaccines offer a promising strategy to reduce the incidence of fatalities associated with fentanyl-related substances, as well as treatment for opioid use disorder (OUD). This study reports monovalent and bivalent vaccination strategies that elicit polyclonal antibody responses effective in protecting against the pharmacological actions of carfentanil, fentanyl, or carfentanil/fentanyl mixtures. Rats were prophylactically immunized with individual conjugate vaccines containing either carfentanil- or fentanyl-based haptens, or their combination in bivalent vaccine formulations, and then challenged with carfentanil, fentanyl, or their mixture. First, these studies identified a lead vaccine protective against carfentanil-induced antinociception, respiratory depression, and bradycardia. Then, efficacy against both carfentanil and fentanyl was achieved through bivalent vaccination strategies that combined lead anti-carfentanil and anti-fentanyl vaccines via either heterologous prime/boost or co-administration immunization regimens. These preclinical data support the development of vaccines as a viable strategy to prevent toxicity from exposure to excessive doses of carfentanil, fentanyl, or their mixtures.

11.
Bioorg Med Chem ; 66: 116789, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594649

RESUMO

The apelin receptor (APJ) is a target for cardiovascular indications. Previously, we had identified a novel pyrazole-based agonist 1 ((S)-N-(1-(cyclobutylamino)-1-oxo-5-(piperidin-1-yl)pentan-3-yl)-1-cyclopentyl-5-(2,6-dimethoxyphenyl)-1H-pyrazole-3-carboxamide hydrochloride) of this GPCR. Systematic modification of 1 was performed to produce compounds with improved potency and ADME properties. Orally bioavailable compound 47 with favorable agonist potency (Ca2+EC50 = 24 nM, cAMPi EC50 = 6.5 nM) and pharmacokinetic properties (clearance ∼20 mL/min/kg in rats) was identified. This compound has vastly reduced brain penetration and is devoid of significant off-target liability. In summary, a potent and selective APJ agonist suitable for in vivo studies of APJ in peripheral tissues after oral administration has been identified.


Assuntos
Receptores de Apelina , Pirazóis , Animais , Receptores de Apelina/agonistas , Pirazóis/farmacocinética , Pirazóis/farmacologia , Ratos
12.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34681248

RESUMO

Activation of the neuropeptide S receptor (NPSR) system has been shown to produce anxiolytic-like actions, arousal, and enhance memory consolidation, whereas blockade of the NPSR has been shown to reduce relapse to substances of abuse and duration of anesthetics. We report here the discovery of a novel core scaffold (+) N-benzyl-3-(2-methylpropyl)-1-oxo-3-phenyl-1H,3H,4H,5H,6H,7H-furo[3,4-c]pyridine-5-carboxamide with potent NPSR antagonist activity in vitro. Pharmacokinetic parameters demonstrate that 14b reaches pharmacologically relevant levels in plasma and the brain following intraperitoneal (i.p.) administration, but is cleared rapidly from plasma. Compound 14b was able to block NPS (0.3 nmol)-stimulated locomotor activity in C57/Bl6 mice at 3 mg/kg (i.p.), indicating potent in vivo activity for the structural class. This suggests that 14b can serve as a useful tool for continued mapping of the pharmacological functions of the NPS receptor system.

13.
J Med Chem ; 64(6): 3006-3025, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33705126

RESUMO

Apelin receptor agonism improves symptoms of metabolic syndrome. However, endogenous apelin peptides have short half-lives, making their utility as potential drugs limited. Previously, we had identified a novel pyrazole-based agonist scaffold. Systematic modification of this scaffold was performed to produce compounds with improved ADME properties. Compound 13 with favorable agonist potency (cAMPi EC50 = 162 nM), human liver microsome stability (T1/2 = 62 min), and pharmacokinetic profile in rodents was identified. The compound was tested in a mouse model of diet-induced obesity (DIO) and metabolic syndrome for efficacy. Treatment with 13 led to significant weight loss, hypophagia, improved glucose utilization, reduced liver steatosis, and improvement of disease-associated biomarkers. In conclusion, a small-molecule agonist of the apelin receptor has been identified that is suitable for in vivo investigation of the apelinergic system in DIO and perhaps other diseases where this receptor has been implicated to play a role.


Assuntos
Receptores de Apelina/agonistas , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Pirazóis/uso terapêutico , Animais , Receptores de Apelina/metabolismo , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Redução de Peso/efeitos dos fármacos
14.
Behav Brain Res ; 400: 113059, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33309737

RESUMO

The G-protein-coupled receptor APLNR and its ligands apelin and ELABELA/TODDLER/apela comprise the apelinergic system, a signaling pathway that is critical during development and physiological homeostasis. Targeted regulation of the receptor has been proposed to treat several important diseases including heart failure, pulmonary arterial hypertension and metabolic syndrome. The apelinergic system is widely expressed within the central nervous system (CNS). However, the role of this system in the CNS has not been completely elucidated. Utilizing an Aplnr knockout mouse model, we report here results from tests of sensory ability, locomotion, reward preference, social preference, learning and memory, and anxiety. We find that knockout of Aplnr leads to significant effects on acoustic startle response and sex-specific effects on conditioned fear responses without significant changes in baseline anxiety. In particular, male Aplnr knockout mice display enhanced context- and cue-dependent fear responses. Our results complement previous reports that exogenous Apelin administration reduced conditioned fear and freezing responses in rodent models, and future studies will explore the therapeutic benefit of APLNR-targeted drugs in rodent models of PTSD.


Assuntos
Receptores de Apelina/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
15.
J Med Chem ; 63(23): 14647-14667, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33215913

RESUMO

The incidence of fatal overdoses has increased worldwide due to the widespread access to illicit fentanyl and its potent analogues. Vaccines offer a promising strategy to reduce the prevalence of opioid use disorders (OUDs) and to prevent toxicity from accidental and deliberate exposure to fentanyl and its derivatives. This study describes the development and characterization of vaccine formulations consisting of novel fentanyl-based haptens conjugated to carrier proteins. Vaccine efficacy was tested against opioid-induced behavior and toxicity in mice and rats challenged with fentanyl and its analogues. Prophylactic vaccination reduced fentanyl- and sufentanil-induced antinociception, respiratory depression, and bradycardia in mice and rats. Therapeutic vaccination also reduced fentanyl intravenous self-administration in rats. Because of their selectivity, vaccines did not interfere with the pharmacological effects of commonly used anesthetics nor with methadone, naloxone, oxycodone, or heroin. These preclinical data support the translation of vaccines as a viable strategy to counteract fentanyl use disorders and toxicity.


Assuntos
Fentanila/imunologia , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Transtornos Relacionados ao Uso de Opioides/terapia , Vacinas/imunologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Bovinos , Toxina Diftérica/química , Toxina Diftérica/imunologia , Feminino , Haptenos/química , Haptenos/imunologia , Hemocianinas/química , Hemocianinas/imunologia , Masculino , Camundongos Endogâmicos BALB C , Piperidinas/síntese química , Piperidinas/imunologia , Estudo de Prova de Conceito , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Sufentanil/imunologia
16.
J Labelled Comp Radiopharm ; 63(4): 196-202, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017204

RESUMO

[3 H]Genipin was synthesized in a single step by Ir(I) catalyzed hydrogen isotope exchange. Conditions for selective exchange of the sp2 CH bond ortho to the methyl ester functionality were developed through deuterium modeling studies through a catalyst screen. Optimized conditions so obtained were then utilized with tritium gas to generate [3 H]genipin at a specific activity of 18.5 Ci/mmol. Racemic [14 C]genipin was prepared in eight steps in overall 5.4% radiochemical yield from potassium [14 C]cyanide.


Assuntos
Radioisótopos de Carbono/química , Iridoides/química , Iridoides/síntese química , Trítio/química , Catálise , Técnicas de Química Sintética , Irídio/química , Marcação por Isótopo , Radioquímica
17.
Bioorg Med Chem ; 28(4): 115237, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31948845

RESUMO

The apelinergic system comprises the apelin receptor and its cognate apelin and elabela peptide ligands of various lengths. This system has become an increasingly attractive target for pulmonary and cardiometabolic diseases. Small molecule regulators of this receptor with good drug-like properties are needed. Recently, we discovered a novel pyrazole based small molecule agonist 8 of the apelin receptor (EC50 = 21.5 µM, Ki = 5.2 µM) through focused screening which was further optimized to initial lead 9 (EC50 = 0.800 µM, Ki = 1.3 µM). In our efforts to synthesize more potent agonists and to explore the structural features important for apelin receptor agonism, we carried out structural modifications at N1 of the pyrazole core as well as the amino acid side-chain of 9. Systematic modifications at these two positions provided potent small molecule agonists exhibiting EC50 values of <100 nM. Recruitment of ß-arrestin as a measure of desensitization potential of select compounds was also investigated. Functional selectivity was a feature of several compounds with a bias towards calcium mobilization over ß-arrestin recruitment. These compounds may be suitable as tools for in vivo studies of apelin receptor function.


Assuntos
Receptores de Apelina/agonistas , Pirazóis/farmacologia , Animais , Receptores de Apelina/metabolismo , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 27(16): 3632-3649, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301950

RESUMO

Antagonists of type 1 cannabinoid receptors (CB1) may be useful in treating diabetes, hepatic disorders, and fibrosis. Otenabant (1) is a potent and selective CB1 inverse agonist that was under investigation as an anti-obesity agent, but its development was halted once adverse effects associated with another marketed inverse agonist rimonabant (2) became known. Non-tissue selective antagonists of CB1 that have high levels of brain penetration produce adverse effects in a small subset of patients including anxiety, depression and suicidal ideation. Currently, efforts are underway to produce compounds that have limited brain penetration. In this report, novel analogs of 1 are explored to develop and test strategies for peripheralization. The piperidine of 1 is studied as a linker, which is functionalized with alkyl, heteroalkyl, aryl and heteroaryl groups using a connector in the form of an amine, amide, sulfonamide, sulfamide, carbamate, oxime, amidine, or guanidine. We also report more polar replacements for the 4-chlorophenyl group in the 9-position of the purine core, which improve calculated physical properties of the molecules. These studies resulted in compounds such as 75 that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. SAR studies revealed ways to adjust physical properties to limit brain exposure.


Assuntos
Purinas/química , Receptor CB1 de Canabinoide/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Med Chem ; 62(13): 6330-6345, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185168

RESUMO

Peripherally restricted CB1 receptor antagonists may be useful in treating metabolic syndrome, diabetes, liver diseases, and gastrointestinal disorders. Clinical development of the centrally acting CB1 inverse agonist otenabant (1) was halted due to its potential of producing adverse effects. SAR studies of 1 are reported herein with the objective of producing peripherally restricted analogues. Crystal structures of hCB1 and docking studies with 1 indicate that the piperidine group could be functionalized at the 4-position to access a binding pocket that can accommodate both polar and nonpolar groups. The piperidine is studied as a linker, functionalized with alkyl, heteroalkyl, aryl, and heteroaryl groups using a urea connector. Orally bioavailable and peripherally selective compounds have been produced that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. Compound 38 blocked alcohol-induced liver steatosis in mice and has good ADME properties for further development.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Piperidinas/farmacologia , Purinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Agonismo Inverso de Drogas , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Feminino , Humanos , Fígado/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Purinas/síntese química , Purinas/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
20.
Mol Pharm ; 15(11): 4947-4962, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30240216

RESUMO

Vaccines may offer a new treatment strategy for opioid use disorders and opioid-related overdoses. To speed translation, this study evaluates opioid conjugate vaccines containing components suitable for pharmaceutical manufacturing and compares analytical assays for conjugate characterization. Three oxycodone-based haptens (OXY) containing either PEGylated or tetraglycine [(Gly)4] linkers were conjugated to a keyhole limpet hemocyanin (KLH) carrier protein via carbodiimide (EDAC) or maleimide chemistry. The EDAC-conjugated OXY(Gly)4-KLH was most effective in reducing oxycodone distribution to the brain in mice. Vaccine efficacy was T cell-dependent. The lead OXY hapten was conjugated to the KLH, tetanus toxoid, diphtheria cross-reactive material (CRM), as well as the E. coli-expressed CRM (EcoCRM) and nontoxic tetanus toxin heavy chain fragment C (rTTHc) carrier proteins. All vaccines induced early hapten-specific B cell expansion and showed equivalent efficacy against oxycodone in mice. However, some hapten-protein conjugates were easier to characterize for molecular weight and size. Finally, heroin vaccines formulated with either EcoCRM or KLH were equally effective in reducing heroin-induced antinociception and distribution to the brain of heroin and its metabolites in mice. This study identifies vaccine candidates and vaccine components for further development.


Assuntos
Portadores de Fármacos/química , Overdose de Drogas/terapia , Heroína/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/terapia , Oxicodona/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/química , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Haptenos/química , Hemocianinas/química , Heroína/química , Heroína/imunologia , Heroína/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nociceptividade/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/imunologia , Oxicodona/química , Oxicodona/imunologia , Oxicodona/farmacocinética , Distribuição Tecidual , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA