Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17313, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429895

RESUMO

Sexual maturation in many fishes requires a major physiological change that involves a rapid transition between energy storage and usage. In Atlantic salmon, this transition for the initiation of maturation is tightly controlled by seasonality and requires a high-energy status. Lipid metabolism is at the heart of this transition since lipids are the main energy storing molecules. The balance between lipogenesis (lipid accumulation) and lipolysis (lipid use) determines energy status transitions. A genomic region containing a transcription co-factor of the Hippo pathway, vgll3, is the main determinant of maturation timing in Atlantic salmon. Interestingly, vgll3 acts as an inhibitor of adipogenesis in mice and its genotypes are potentially associated with seasonal heterochrony in lipid storage and usage in juvenile Atlantic salmon. Here, we explored changes in expression of more than 300 genes directly involved in the processes of adipogenesis, lipogenesis and lipolysis, as well as the Hippo pathway in the adipose tissue of immature and mature Atlantic salmon with distinct vgll3 genotypes. We found molecular evidence consistent with a scenario in which immature males with different vgll3 genotypes exhibit contrasting seasonal dynamics in their lipid profiles. We also identified components of the Hippo signalling pathway as potential major drivers of vgll3 genotype-specific differences in adipose tissue gene expression. This study demonstrates the importance of adipose gene expression patterns for directly linking environmental changes with energy balance and age at maturity through genetic factors bridging lipid metabolism, seasonality and sexual maturation.

2.
Gigascience ; 11(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022701

RESUMO

BACKGROUND: The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS: The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS: The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


Assuntos
Borboletas , Fritillaria , Animais , Borboletas/genética , Mapeamento Cromossômico , Cromossomos/genética , Fritillaria/genética , Genoma , Masculino
3.
Proc Biol Sci ; 289(1967): 20212500, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078367

RESUMO

A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.


Assuntos
Características de História de Vida , Salmo salar , Animais , Genoma , Genótipo , Fenótipo , Salmo salar/genética , Fatores de Transcrição/genética
4.
Mol Ecol ; 31(2): 562-570, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716945

RESUMO

Efforts to understand the genetic underpinnings of phenotypic variation are becoming more and more frequent in molecular ecology. Such efforts often lead to the identification of candidate regions showing signals of association and/or selection. These regions may contain multiple genes and therefore validation of which genes are actually responsible for the signal is required. In Atlantic salmon (Salmo salar), a large-effect locus for maturation timing, an ecologically important trait, occurs in a genomic region including two genes, vgll3 and akap11, but data for clearly determining which of the genes (or both) contribute to the association have been lacking. Here, we take advantage of natural recombination events detected between the two candidate genes in a salmon broodstock to reduce linkage disequilibrium at the locus, thus enabling delineation of the influence of variation at these two genes on early maturation. By rearing 5,895 males to maturation age, of which 81% had recombinant vgll3/akap11 allelic combinations, we found that vgll3 single nucleotide polymorphism (SNP) variation was strongly associated with early maturation, whereas there was little or no association between akap11 SNP variation and early maturation. These findings provide strong evidence supporting vgll3 as the primary candidate gene in the chromosome 25 locus for influencing early maturation. This will help guide future research for understanding the genetic processes controlling early maturation. This also exemplifies the utility of natural recombinants to more precisely map causal variation underlying ecologically important phenotypic diversity.


Assuntos
Polimorfismo de Nucleotídeo Único , Salmo salar , Alelos , Animais , Genômica , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único/genética , Salmo salar/genética
5.
Mol Ecol ; 30(18): 4505-4519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34228841

RESUMO

Sexual maturation timing is a life-history trait central to the balance between mortality and reproduction. Maturation may be triggered when an underlying compound trait, called liability, exceeds a threshold. In many different species and especially fishes, this liability is approximated by growth and body condition. However, environmental vs. genetic contributions either directly or via growth and body condition to maturation timing remain unclear. Uncertainty exists also because the maturation process can reverse this causality and itself affect growth and body condition. In addition, disentangling the contributions of polygenic and major loci can be important. In many fishes, males mature before females, enabling the study of associations between male maturation and maturation-unbiased female liability traits. Using 40 Atlantic salmon families, longitudinal common-garden experimentation, and quantitative genetic analyses, we disentangled environmental from polygenic and major locus (vgll3) effects on male maturation, and sex-specific growth and condition. We detected polygenic heritabilities for maturation, growth, and body condition, and vgll3 effects on maturation and body condition but not on growth. Longitudinal patterns for sex-specific phenotypic liability, and for genetic variances and correlations between sexes suggested that early growth and condition indeed positively affected maturation initiation. However, towards spawning time, causality appeared reversed for males whereby maturation affected growth negatively and condition positively via both the environmental and genetic effects. Altogether, the results indicate that growth and condition are useful traits to study liability for maturation initiation, but only until maturation alters their expression, and that vgll3 contributes to maturation initiation via condition.


Assuntos
Características de História de Vida , Salmo salar , Animais , Feminino , Humanos , Masculino , Fenótipo , Reprodução , Salmo salar/genética , Maturidade Sexual/genética , Fatores de Transcrição/genética
6.
PLoS Genet ; 16(9): e1009055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32997662

RESUMO

A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequências Reguladoras de Ácido Ribonucleico , Salmo salar/fisiologia , Fatores de Transcrição/metabolismo , Alelos , Processamento Alternativo , Animais , Éxons , Feminino , Genótipo , Características de História de Vida , Masculino , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Maturidade Sexual , Testículo/crescimento & desenvolvimento , Fatores de Transcrição/genética
7.
Nat Commun ; 8: 14504, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211463

RESUMO

Ecologists are challenged to construct models of the biological consequences of habitat loss and fragmentation. Here, we use a metapopulation model to predict the distribution of the Glanville fritillary butterfly during 22 years across a large heterogeneous landscape with 4,415 small dry meadows. The majority (74%) of the 125 networks into which the meadows were clustered are below the extinction threshold for long-term persistence. Among the 33 networks above the threshold, spatial configuration and habitat quality rather than the pooled habitat area predict metapopulation size and persistence, but additionally allelic variation in a SNP in the gene Phosphoglucose isomerase (Pgi) explains 30% of variation in metapopulation size. The Pgi genotypes are associated with dispersal rate and hence with colonizations and extinctions. Associations between Pgi genotypes, population turnover and metapopulation size reflect eco-evolutionary dynamics, which may be a common feature in species inhabiting patch networks with unstable local dynamics.


Assuntos
Borboletas/genética , Ecossistema , Fritillaria/fisiologia , Alelos , Animais , Extinção Biológica , Frequência do Gene , Genótipo , Modelos Logísticos , Dinâmica Populacional , Probabilidade
8.
J Exp Biol ; 219(Pt 10): 1488-94, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944488

RESUMO

Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance.


Assuntos
Borboletas/fisiologia , Metabolismo Energético , Voo Animal/fisiologia , Fritillaria/parasitologia , Oxigênio/metabolismo , Animais , Metabolismo Basal/efeitos dos fármacos , Metabolismo Basal/fisiologia , Borboletas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Voo Animal/efeitos dos fármacos , Glucose/análise , Hipóxia/metabolismo , Masculino , Análise de Regressão , Descanso , Inanição/metabolismo , Trealase/antagonistas & inibidores , Trealase/metabolismo , Trealose/análise
9.
Mol Ecol ; 24(19): 4886-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26331775

RESUMO

Insect flight is one of the most energetically demanding activities in the animal kingdom, yet for many insects flight is necessary for reproduction and foraging. Moreover, dispersal by flight is essential for the viability of species living in fragmented landscapes. Here, working on the Glanville fritillary butterfly (Melitaea cinxia), we use transcriptome sequencing to investigate gene expression changes caused by 15 min of flight in two contrasting populations and the two sexes. Male butterflies and individuals from a large metapopulation had significantly higher peak flight metabolic rate (FMR) than female butterflies and those from a small inbred population. In the pooled data, FMR was significantly positively correlated with genome-wide heterozygosity, a surrogate of individual inbreeding. The flight experiment changed the expression level of 1513 genes, including genes related to major energy metabolism pathways, ribosome biogenesis and RNA processing, and stress and immune responses. Males and butterflies from the population with high FMR had higher basal expression of genes related to energy metabolism, whereas females and butterflies from the small population with low FMR had higher expression of genes related to ribosome/RNA processing and immune response. Following the flight treatment, genes related to energy metabolism were generally down-regulated, while genes related to ribosome/RNA processing and immune response were up-regulated. These results suggest that common molecular mechanisms respond to flight and can influence differences in flight metabolic capacity between populations and sexes.


Assuntos
Borboletas/genética , Voo Animal , Expressão Gênica , Caracteres Sexuais , Transcriptoma , Animais , Borboletas/fisiologia , Metabolismo Energético/genética , Feminino , Finlândia , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
10.
PLoS One ; 9(7): e101467, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988207

RESUMO

We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation.


Assuntos
Adaptação Fisiológica , Borboletas/genética , Perfilação da Expressão Gênica , Animais , Borboletas/fisiologia , Proteínas de Transporte/genética , Análise por Conglomerados , Ecossistema , Expressão Gênica , Frequência do Gene , Variação Genética , Genoma , Proteínas de Insetos/genética , Polimorfismo de Nucleotídeo Único , Regulação para Cima
11.
RNA ; 12(10): 1883-92, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16957280

RESUMO

The rate of excision of U12-type introns has been reported to be slower than that of U2-type introns, suggesting a rate-limiting bottleneck that could down-regulate genes containing U12-type introns. The mechanistic reasons for this slower rate of intron excision are not known, but lower abundance of the U12-type snRNPs and slower rate of assembly or catalytic activity have been suggested. To investigate snRNP abundance we concentrated on the U4atac snRNA, which is the least abundant of the U12-type snRNAs and is limiting the formation of U4atac/U6atac complex. We identified mouse NIH-3T3 cell line isolates in which the level of both U4atac snRNA and U4atac/U6atac complexes is reduced to 10%-20% of the normal level. We used these cell lines to investigate splicing efficiency by transient transfection of a reporter gene containing a U12-type intron and by quantitative PCR analysis of endogenous genes. The splicing of the reporter U12-type intron was very inefficient, but the activity could be restored by overexpression of U4atac snRNA. Using these U4atac-deficient NIH-3T3 cells, we confirmed the results of previous studies showing that U12-type introns of endogenous genes are, indeed, excised more slowly than U2-type introns, but we found that the rate did not differ from that measured in cells displaying normal levels of U4atac snRNA. Thus our results suggest that the cellular abundance of the snRNPs does not limit U12-type intron splicing under normal conditions.


Assuntos
Íntrons , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Células HeLa , Humanos , Técnicas In Vitro , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA