RESUMO
INTRODUCTION: Patients with hemophilia A treated with coagulation Factor VIII (FVIII) products are at risk for developing anti-FVIII antibodies. The ABIRISK Consortium aimed to provide knowledge on the formation and detection of anti-drug antibodies against biopharmaceutical products, including FVIII. Accordingly, standardized and validated assays for the detection of binding (total) and neutralizing antibodies are needed. AIM: Two-center validation of an ELISA for the detection of total FVIII-binding IgG-antibodies and Nijmegen-Bethesda assays for the quantification of FVIII-neutralizing antibodies according to consensus validation guidelines. METHODS: Validation of assays at both sites was done according to published recommendations and included preanalytics, the determination of key assay parameters, including cut-points, assay sensitivity, precision, and FVIII interference. RESULTS: The validated assays reproducibly detected FVIII-binding and -neutralizing antibodies with comparable performance in both laboratories. Floating screening cut-points were established for both assays. Determined mass-based sensitivity of both assays (all values ≤66 ng/mL) complied with the minimum sensitivity for the detection of anti-drug antibodies as recommended by the FDA (<100 ng/mL). Intra- and inter-assay coefficients of variation did not exceed 25%. Assay validation further revealed that pre-analytical heat treatment led to potentially false-positive ELISA results, while up to 0.15 IU/mL, residual FVIII showed no significant impact. Overall, good agreement of results was found for patient samples analyzed at both study sites. CONCLUSION: Comprehensive validation of different anti-FVIII-antibody assays in two laboratories gave novel insights into the impact of pre-analytical sample treatment as well as the comparability of test results generated by the use of methodically different assays.
Assuntos
Anticorpos Neutralizantes , Hemofilia A , Humanos , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Testes de Coagulação Sanguínea , Imunoglobulina G , Ensaio de Imunoadsorção EnzimáticaRESUMO
A survey conducted by the Therapeutic Product Immunogenicity (TPI) community within the American Association of Pharmaceutical Scientists (AAPS) posed questions to the participants on their immunogenicity risk assessment strategies prior to clinical development. The survey was conducted in 2 phases spanning 5 years, and queried information about in silico algorithms and in vitro assay formats for immunogenicity risk assessments and how the data were used to inform early developability effort in discovery, chemistry, manufacturing and control (CMC), and non-clinical stages of development. The key findings representing the trends from a majority of the participants included the use of high throughput in silico algorithms, human immune cell-based assays, and proteomics based outputs, as well as specialized assays when therapeutic mechanism of action could impact risk assessment. Additional insights into the CMC-related risks could also be gathered with the same tools to inform future process development and de-risk critical quality attributes with uncertain and unknown risks. The use of the outputs beyond supporting early development activities was also noted with participants utilizing the risk assessments to drive their clinical strategy and streamline bioanalysis.
Assuntos
Desenvolvimento de Medicamentos , Humanos , Consenso , Medição de Risco/métodosRESUMO
The purpose of this article is to illustrate how performance of an immunogenicity risk assessment at the earliest stage of product development can be instructive for critical early decision-making such as choice of host system for expression of a recombinant therapeutic protein and determining the extent of analytical characterization and control of heterogeneity in co- and post-translational modifications. Application of a risk-based approach for a hypothetical recombinant DNA analogue of a human endogenous cytokine with immunomodulatory functions is described. The manner in which both intrinsic and extrinsic factors could interact to influence the relative scale of risk associated with expression in alternative hosts, namely Chinese hamster ovary (CHO) cells, Pichia pastoris, Escherichia coli, or Nicotinia tabacum is considered in relation to the development of the investigational product to treat an autoimmune condition. The article discusses how particular product-related variants (primary amino acid sequence modifications and post-translational glycosylation or other modifications) and process-derived impurities (host cell proteins, endotoxins, beta-glucans) associated with the different expression systems might influence the impact of immunogenicity on overall clinical benefit versus risk for a therapeutic protein candidate that has intrinsic MHC Class II binding potential. The implications of the choice of expression system for relative risk are discussed in relation to specific actions for evaluation and measures for risk mitigation, including use of in silico and in vitro methods to understand intrinsic immunogenic potential relative to incremental risk associated with non-human glycan and protein impurities. Finally, practical guidance on presentation of this information in regulatory submissions to support clinical development is provided.
Assuntos
Citocinas/imunologia , Fenômenos Imunogenéticos , Proteínas Recombinantes/imunologia , Animais , Citocinas/metabolismo , Epitopos de Linfócito T , Humanos , Proteínas Recombinantes/metabolismo , Medição de Risco/métodos , Fatores de RiscoRESUMO
Pegunigalsidase alfa, a novel PEGylated, covalently crosslinked form of α-galactosidase A developed as enzyme replacement therapy (ERT) for Fabry disease (FD), was designed to increase plasma half-life and reduce immunogenicity, thereby enhancing efficacy compared with available products. Symptomatic adults with FD participated in this open-label, 3-month dose-ranging study, followed by a 9-month extension. Three cohorts were enrolled in a stepwise manner, each receiving increased doses of pegunigalsidase alfa: 0.2, 1.0, 2.0 mg/kg, via intravenous infusion every other week. Pharmacokinetic analysis occurred on Day 1 and Months 3, 6, and 12. Kidney biopsies at baseline and Month 6 assessed peritubular capillary globotriaosylceramide (Gb3) content. Renal function, cardiac parameters, and other clinical endpoints were assessed throughout. Treatment-emergent adverse events (AEs) and presence of immunoglobulin G (IgG) antidrug antibodies (ADAs) were assessed. Sixteen patients completed 1 year's treatment. Mean terminal plasma half-life (each cohort) ranged from 53 to 121 hours. All 11 male and 1 of 7 female patients presented with classic FD phenotype, in whom renal peritubular capillary Gb3 inclusions were reduced by 84%. Mean estimated glomerular filtration rate was 111 mL/min/1.73 m2 at baseline, remaining stable throughout treatment. Three patients developed treatment-induced IgG ADAs; following 1 year's treatment, all became ADA-negative. Nearly all treatment-emergent AEs were mild or moderate. One patient withdrew from the study following a serious related AE. Pegunigalsidase alfa may represent an advance in ERT for FD, based on its unique pharmacokinetics and apparent low immunogenicity.
Assuntos
Terapia de Reposição de Enzimas , Doença de Fabry/tratamento farmacológico , Triexosilceramidas/metabolismo , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/farmacocinética , Adolescente , Adulto , Feminino , Taxa de Filtração Glomerular , Coração/fisiopatologia , Humanos , Internacionalidade , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto JovemRESUMO
Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies.
Assuntos
Produtos Biológicos , Glucosilceramidase/biossíntese , Plantas/genética , Polissacarídeos/imunologia , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Feminino , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/uso terapêutico , Glicosilação , Humanos , MasculinoRESUMO
Therapeutic protein products (TPPs) are of considerable value in the treatment of a variety of diseases, including cancer, hemophilia, and autoimmune diseases. The success of TPP mainly results from prolonged half-life, increased target specificity and decreased intrinsic toxicity compared with small molecule drugs. However, unwanted immune responses against TPP, such as generation of anti-drug antibody, can impact both drug efficacy and patient safety, which has led to requirements for increased monitoring in regulatory studies and clinical practice, termination of drug development, or even withdrawal of marketed products. We present an overview of current knowledge on immunogenicity of TPP and its impact on efficacy and safety. We also discuss methods for measurement and prediction of immunogenicity and review both product-related and patient-related risk factors that affect its development, and efforts that may be taken to mitigate it. Lastly, we discuss gaps in knowledge and technology and what is needed to fill these.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Formação de Anticorpos/imunologia , Doenças Autoimunes/imunologia , Humanos , Fatores de Risco , Resultado do TratamentoRESUMO
Biotherapeutic-reactive antibodies in treatment-naïve subjects (i.e., pre-existing antibodies) have been commonly detected during clinical immunogenicity assessments; however information on pre-existing antibody prevalence, physiological effects, and impact on posttreatment anti-drug antibody (ADA) induction remains limited. In this analysis, pre-existing antibody prevalence and impact on posttreatment ADA induction were determined using ADA data from 12 biotherapeutics analyzed in 32 clinical studies. Approximately half (58%) of the biotherapeutics were associated with some level of pre-existing antibodies and 67% of those were associated with posttreatment ADA induction. Across all studies, 5.6% of study subjects demonstrated presence of pre-existing antibodies, among which, 17% of the individual subjects had posttreatment increases in their ADA titers while 16% had decreased titers and 67% had no change in titers. However, in studies conducted in the rheumatoid arthritis (RA) population, 14.8% of RA patients were associated with pre-existing antibodies and 30% of those had posttreatment titer increases. The results suggest that in most study subjects, pre-existing antibodies pose a low risk for posttreatment ADA induction. That said, the high risk of induction implicated for RA patients, primarily observed in treatments evaluating novel antibody-based constructs, indicates that further understanding of the contribution of product and disease-specific factors is needed. Cross-industry efforts to collect and analyze a larger data set would enhance understanding of the prevalence, nature, and physiological consequences of pre-existing antibodies, better inform the immunogenicity risk profiles of products associated with these antibodies and lead to better fit-for-purpose immunogenicity management and mitigation strategies.
Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/sangue , Fatores Biológicos/sangue , Terapia Biológica , Fatores Biológicos/imunologia , Terapia Biológica/métodos , Ensaios Clínicos como Assunto/métodos , Humanos , Fatores de Risco , Resultado do TratamentoRESUMO
All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas/imunologia , Proteínas/uso terapêutico , Animais , Simulação por Computador , Humanos , Sistema Imunitário/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Modelos BiológicosRESUMO
Aggregation and unwanted immunogenicity are hurdles to avoid in successful commercial development of antibody-based therapeutics. In this article, the relationship between aggregation-prone regions (APRs), capable of forming cross-ß motifs/amyloid fibrils, and major histocompatibility complex class II-restricted human leukocyte antigen (HLA)-DR-binding T-cell immune epitopes (TcIEs) is analyzed using amino acid sequences of 25 therapeutic antibodies, 55 TcIEs recognized by T-regulatory cells (tregitopes), 1000 randomly generated 15-residue-long peptides, 2257 human self-TcIEs (autoantigens), and 11 peptides in HLA-peptide cocrystal structures. Sequence analyses from these diverse sources consistently show a high level of correlation between APRs and TcIEs: approximately one-third of TcIEs contain APRs, but the majority of APRs occur within TcIE regions (TcIERs). Tregitopes also contain APRs. Most APR-containing TcIERs can bind multiple HLA-DR alleles, suggesting that aggregation-driven adverse immune responses could impact a broad segment of patient population. This article has identified common molecular sequence-structure loci that potentially contribute toward both manufacturability and safety profiles of the therapeutic antibodies, thereby laying a foundation for simultaneous optimization of these attributes in novel and follow-on candidates. Incidence of APRs within TcIERs is not special to biotherapeutics, self-TcIEs from human proteins, involved in various diseases, also contain predicted APRs and experimentally proven amyloid-fibril-forming peptide sequence portions.
Assuntos
Amiloide/imunologia , Anticorpos/imunologia , Anticorpos/uso terapêutico , Desenho de Fármacos , Epitopos de Linfócito T/imunologia , Antígenos HLA-DR/imunologia , Sequência de Aminoácidos , Amiloide/química , Anticorpos/química , Desenho Assistido por Computador , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/uso terapêutico , Alinhamento de SequênciaRESUMO
The administration of biological therapeutics may result in the development of anti-drug antibodies (ADAs) in treated subjects. In some cases, ADA responses may result in the loss of therapeutic efficacy due to the formation of neutralizing ADAs (NAbs). An important characteristic of anti-drug NAbs is their direct inhibitory effect on the pharmacological activity of the therapeutic. Neutralizing antibody responses are of particular concern for biologic products with an endogenous homolog whose activity can be potentially dampened or completely inhibited by the NAbs leading to an autoimmune-type deficiency syndrome. Therefore, it is important that ADAs are detected and characterized appropriately using sensitive and reliable methods. The design, development and optimization of cell-based assays used for detection of NAbs have been published previously by Gupta et al. 2007 [1]. This paper provides recommendations on best practices for the validation of cell-based NAb assay and suggested validation parameters based on the experience of the authors.
Assuntos
Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Animais , Bioensaio/métodos , Produtos Biológicos/imunologia , Proteínas Sanguíneas/química , Química Farmacêutica/métodos , Química Farmacêutica/normas , Humanos , Sistema Imunitário , Testes de Neutralização , Preparações Farmacêuticas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , SoftwareRESUMO
Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.
Assuntos
Produtos Biológicos/imunologia , Descoberta de Drogas , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Proteínas/imunologia , Sequência de Aminoácidos , Animais , Produtos Biológicos/uso terapêutico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas/uso terapêuticoRESUMO
An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.
Assuntos
Formação de Anticorpos/efeitos dos fármacos , Biofarmácia/métodos , Proteínas Recombinantes/toxicidade , Testes de Toxicidade/métodos , Animais , Biofarmácia/estatística & dados numéricos , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Especificidade da Espécie , Testes de Toxicidade/estatística & dados numéricosRESUMO
The appropriate evaluation of the immunogenicity of biopharmaceuticals is of major importance for their successful development and licensure. Antibodies elicited by these products in many cases cause no detectable clinical effects in humans. However, antibodies to some therapeutic proteins have been shown to cause a variety of clinical consequences ranging from relatively mild to serious adverse events. In addition, antibodies can affect drug efficacy. In non-clinical studies, anti-drug antibodies (ADA) can complicate interpretation of the toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) data. Therefore, it is important to develop testing strategies that provide valid assessments of antibody responses in both non-clinical and clinical studies. This document provides recommendations for antibody testing strategies stemming from the experience of contributing authors. The recommendations are intended to foster a more unified approach to antibody testing across the biopharmaceutical industry. The strategies proposed are also expected to contribute to better understanding of antibody responses and to further advance immunogenicity evaluation.
Assuntos
Anticorpos/análise , Produtos Biológicos/imunologia , Biotecnologia/métodos , Animais , Humanos , Medição de RiscoRESUMO
Throughout the life cycle of biopharmaceutical products, bioanalytical support is provided using ligand binding assays to measure the drug product for pharmacokinetic, pharmacodynamic, and immunogenicity studies. The specificity and selectivity of these ligand binding assays are highly dependent on the ligand binding reagents. Thus the selection, characterization, and management processes for ligand binding reagents are crucial to successful assay development and application. This report describes process considerations for selection and characterization of ligand binding reagents that are integral parts of the different phases of assay development. Changes in expression, purification, modification, and storage of the ligand binding reagents may have a profound effect on the ligand binding assay performance. Thus long-term management of the critical ligand binding assay reagents is addressed including suggested characterization criteria that allow ligand binding reagents to be used in as consistent a manner as possible. Examples of challenges related to the selection, modification, and characterization of ligand binding reagents are included.
Assuntos
Anticorpos Monoclonais/química , Preparações Farmacêuticas/metabolismo , Farmacocinética , Imunoensaio/métodos , Indicadores e Reagentes/química , Indicadores e Reagentes/normas , Ligantes , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The administration of biological therapeutics can evoke some level of immune response to the drug product in the receiving subjects. An immune response comprised of neutralizing antibodies can lead to loss of efficacy or potentially more serious clinical sequelae. Therefore, it is important to monitor the immunogenicity of biological therapeutics throughout the drug product development cycle. Immunoassays are typically used to screen for the presence and development of anti-drug product antibodies. However, in-vitro cell-based assays prove extremely useful for the characterization of immunoassay-positive samples to determine if the detected antibodies have neutralizing properties. This document provides scientific recommendations based on the experience of the authors for the development of cell-based assays for the detection of neutralizing antibodies in non-clinical and clinical studies.
Assuntos
Anticorpos/análise , Bioensaio/métodos , Produtos Biológicos/imunologia , Imunoensaio/métodos , Animais , Anticorpos/imunologia , Bioensaio/normas , Produtos Biológicos/uso terapêutico , Calibragem , Linhagem Celular , Guias como Assunto , Humanos , Imunoensaio/normas , Testes de Neutralização/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa , Sensibilidade e EspecificidadeRESUMO
Intravenous administration of recombinant human factor IX (rhFIX) acutely corrects the coagulopathy in hemophilia B dogs. To date, 20 of 20 dogs developed inhibitory antibodies to the xenoprotein, making it impossible to determine if new human FIX products, formulations, or methods of chronic administration can reduce bleeding frequency. Our goal was to determine whether hemophilia B dogs rendered tolerant to rhFIX would have reduced bleeding episodes while on sustained prophylactic rhFIX administered subcutaneously. Reproducible methods were developed for inducing tolerance to rhFIX in this strain of hemophilia B dogs, resulting in a significant reduction in the development of inhibitors relative to historical controls (5 of 12 versus 20 or 20, P <.001). The 7 of 12 tolerized hemophilia B dogs exhibited shortened whole blood clotting times (WBCTs), sustained detectable FIX antigen, undetectable Bethesda inhibitors, transient or no detectable antihuman FIX antibody titers by enzyme-linked immunosorbent assay (ELISA), and normal clearance of infused rhFIX. Tolerized hemophilia B dogs had 69% reduction in bleeding frequency in year 1 compared with nontolerized hemophilia B dogs (P =.0007). If proven safe in human clinical trials, subcutaneous rhFIX may provide an alternate approach to prophylactic therapy in selected patients with hemophilia B.