Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Immunol ; 14: 1216457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533859

RESUMO

The brains of COVID-19 patients are affected by the SARS-CoV-2 virus, and these effects may contribute to several COVID-19 sequelae, including cognitive dysfunction (termed "long COVID" by some researchers). Recent advances concerning the role of neuroinflammation and the consequences for brain function are reviewed in this manuscript. Studies have shown that respiratory SARS-CoV-2 infection in mice and humans is associated with selective microglial reactivity in the white matter, persistently impaired hippocampal neurogenesis, a decrease in the number of oligodendrocytes, and myelin loss. Brain MRI studies have revealed a greater reduction in grey matter thickness in the orbitofrontal cortex and parahippocampal gyrus, associated with a greater reduction in global brain size, in those with SARS-CoV-2 and a greater cognitive decline. COVID-19 can directly infect endothelial cells of the brain, potentially promoting clot formation and stroke; complement C3 seems to play a major role in this process. As compared to controls, the brain tissue of patients who died from COVID-19 have shown a significant increase in the extravasation of fibrinogen, indicating leakage in the blood-brain barrier; furthermore, recent studies have documented the presence of IgG, IgM, C1q, C4d, and C5b-9 deposits in the brain tissue of COVID-19 patients. These data suggest an activation of the classical complement pathway and an immune-mediated injury to the endothelial cells. These findings implicate both the classical and alternative complement pathways, and they indicate that C3b and the C5b-9 terminal complement complex (membrane attack complex, MAC) are acting in concert with neuroinflammatory and immune factors to contribute to the neurological sequelae seen in patients with COVID.


Assuntos
COVID-19 , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Camundongos , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , Encéfalo/metabolismo
2.
Front Immunol ; 13: 979414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172382

RESUMO

Recent advances in understanding the pathogenesis of multiple sclerosis (MS) have brought into the spotlight the major role played by reactive astrocytes in this condition. Response Gene to Complement (RGC)-32 is a gene induced by complement activation, growth factors, and cytokines, notably transforming growth factor ß, that is involved in the modulation of processes such as angiogenesis, fibrosis, cell migration, and cell differentiation. Studies have uncovered the crucial role that RGC-32 plays in promoting the differentiation of Th17 cells, a subtype of CD4+ T lymphocytes with an important role in MS and its murine model, experimental autoimmune encephalomyelitis. The latest data have also shown that RGC-32 is involved in regulating major transcriptomic changes in astrocytes and in favoring the synthesis and secretion of extracellular matrix components, growth factors, axonal growth molecules, and pro-astrogliogenic molecules. These results suggest that RGC-32 plays a major role in driving reactive astrocytosis and the generation of astrocytes from radial glia precursors. In this review, we summarize recent advances in understanding how RGC-32 regulates the behavior of Th17 cells and astrocytes in neuroinflammation, providing insight into its role as a potential new biomarker and therapeutic target.


Assuntos
Proteínas de Ciclo Celular , Esclerose Múltipla , Proteínas Musculares , Proteínas do Tecido Nervoso , Animais , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas do Sistema Complemento , Citocinas , Humanos , Camundongos , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Doenças Neuroinflamatórias , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Clin Immunol ; 238: 109020, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462050

RESUMO

Proliferation of endothelial cells (EC) and smooth muscle cells (SMC) is a critical process in atherosclerosis. Here, we investigated the involvement of sublytic C5b-9 effector Response Gene to Complement 32 (RGC-32) in cell cycle activation, phenotypic switch, and production of extracellular matrix (ECM) in SMC. Overexpression of RGC-32 augmented C5b-9-induced cell cycle activation and proliferation of SMC in an ERK1-dependent manner and silencing of RGC-32 inhibited C5b-9-induced cell cycle activation. C5b-9-induced cell cycle activation also required phosphorylation of RGC-32 at threonine 91. We found that ECM components fibronectin and collagens I-V were expressed by SMC in human aortic atherosclerotic tissue. Silencing of RGC-32 in cultured SMC was followed by a significant reduction in TGF-ß-induced expression of SMC differentiation markers myocardin, SM22 and α-SMA, and that of collagens I, IV and V. These data suggest that RGC-32 participates in both sublytic C5b-9-induced cell cycle activation and TGF-ß-induced ECM production.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas Musculares , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento , Células Endoteliais , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Transformador beta
4.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668840

RESUMO

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas Nucleares/fisiologia , Fibrose Pulmonar/prevenção & controle , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Feminino , Fibroblastos/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteína Smad2/genética , Transcriptoma , Fator de Crescimento Transformador beta3/genética
5.
ACS Biomater Sci Eng ; 7(12): 5666-5677, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34813288

RESUMO

Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid dendritic cells (pDCs) via toll-like receptors (TLRs), contributing to disease pathogenesis by driving the secretion of inflammatory type I interferons (IFNs). Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ∼3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use, resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) filamentous nanocarriers, filomicelles (FMs), could directly deliver CQ to pDCs via passive, morphology-based targeting to concentrate drug delivery to specific immune cells, improve drug activity by increased inhibition of type I IFN, and enhance efficacy per dose. Healthy human peripheral blood mononuclear cells were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time reverse transcription-quantitative polymerase chain reaction. Our results showed that 50 µg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex-rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs and monocytes in vitro and in tissues frequently damaged in SLE patients (i.e., kidneys), while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.


Assuntos
Interferon Tipo I , Cloroquina/farmacologia , Células Dendríticas/metabolismo , Humanos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Distribuição Tecidual , Receptor Toll-Like 9
6.
Front Immunol ; 12: 705308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394104

RESUMO

Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-ß signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-ß. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-ß-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.


Assuntos
Astrócitos/metabolismo , Gliose/genética , Doenças Neuroinflamatórias/genética , Proteínas Nucleares/fisiologia , Transcriptoma , Animais , Orientação de Axônios/genética , Encéfalo/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Gliose/etiologia , Gliose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurogênese , Doenças Neuroinflamatórias/metabolismo , Proteínas Nucleares/deficiência , Organismos Livres de Patógenos Específicos , Medula Espinal/patologia
7.
Trends Mol Med ; 27(2): 152-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33046407

RESUMO

Systemic lupus erythematosus (SLE) is a multisystem, chronic autoimmune disease where treatment varies by patient and disease activity. Strong preclinical results and clinical correlates have motivated development of many drugs, but many of these have failed to achieve efficacy in clinical trials. FDA approval of belimumab in 2011 was the first successful SLE drug in nearly six decades. In this article, we review insights into the molecular and clinical heterogeneity of SLE from transcriptomics studies and detail their potential impact on drug development and clinical practices. We critically examine the pipeline of SLE drugs, including past failures and their associated lessons and current promising approaches. Finally, we identify opportunities for integrating these findings and drug development with new multidisciplinary advances to enhance future SLE treatment.


Assuntos
Lúpus Eritematoso Sistêmico/terapia , Variação Biológica da População , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/etiologia , Terapia de Alvo Molecular , Medicina de Precisão/métodos
8.
Front Immunol ; 11: 619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328069

RESUMO

Sublytic levels of C5b-9 increase the survival of oligodendrocytes (OLGs) and induce the cell cycle. We have previously observed that SIRT1 co-localizes with surviving OLGs in multiple sclerosis (MS) plaques, but it is not yet known whether SIRT1 is involved in OLGs survival after exposure to sublytic C5b-9. We have now investigated the role of SIRT1 in OLGs differentiation and the effect of sublytic levels of C5b-9 on SIRT1 and phosphorylated-SIRT1 (Ser27) expression. We also examined the downstream effects of SIRT1 by measuring histone H3 lysine 9 trimethylation (H3K9me3) and the expression of cyclin D1 as a marker of cell cycle activation. OLG progenitor cells (OPCs) purified from the brain of rat pups were differentiated in vitro and treated with sublytic C5b-9 or C5b6. To investigate the signaling pathway activated by C5b-9 and required for SIRT1 expression, we pretreated OLGs with a c-jun antisense oligonucleotide, a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), and a protein kinase C (PKC) inhibitor (H7). Our data show a significant reduction in phospho-SIRT1 and SIRT1 expression during OPCs differentiation, associated with a decrease in H3K9me3 and a peak of cyclin D1 expression in the first 24 h. Stimulation of OLGs with sublytic C5b-9 resulted in an increase in the expression of SIRT1 and phospho-SIRT1, H3K9me3, cyclin D1 and decreased expression of myelin-specific genes. C5b-9-stimulated SIRT1 expression was significantly reduced after pretreatment with c-jun antisense oligonucleotide, H7 or LY294002. Inhibition of SIRT1 with sirtinol also abolished C5b-9-induced DNA synthesis. Taken together, these data show that induction of SIRT1 expression by C5b-9 is required for cell cycle activation and is mediated through multiple signaling pathways.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Oligodendroglia/efeitos dos fármacos , Sirtuína 1/fisiologia , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Front Immunol ; 11: 608294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569054

RESUMO

Astrocytes are increasingly recognized as critical contributors to multiple sclerosis pathogenesis. We have previously shown that lack of Response Gene to Complement 32 (RGC-32) alters astrocyte morphology in the spinal cord at the peak of experimental autoimmune encephalomyelitis (EAE), suggesting a role for RGC-32 in astrocyte differentiation. In this study, we analyzed the expression and distribution of astrocytes and astrocyte progenitors by immunohistochemistry in spinal cords of wild-type (WT) and RGC-32-knockout (KO) mice with EAE and of normal adult mice. Our analysis showed that during acute EAE, WT astrocytes had a reactive morphology and increased GFAP expression, whereas RGC-32 KO astrocytes had a morphology similar to that of radial glia and an increased expression of progenitor markers such as vimentin and fatty acid binding protein 7 (FABP7). In control mice, GFAP expression and astrocyte density were also significantly higher in the WT group, whereas the number of vimentin and FABP7-positive radial glia was significantly higher in the RGC-32 KO group. In vitro studies on cultured neonatal astrocytes from WT and RGC-32 KO mice showed that RGC-32 regulates a complex array of molecular networks pertaining to signal transduction, growth factor expression and secretion, and extracellular matrix (ECM) remodeling. Among the most differentially expressed factors were insulin-like growth factor 1 (IGF1), insulin-like growth factor binding proteins (IGFBPs), and connective tissue growth factor (CTGF); their expression was downregulated in RGC-32-depleted astrocytes. The nuclear translocation of STAT3, a transcription factor critical for astrogliogenesis and driving glial scar formation, was also impaired after RGC-32 silencing. Taken together, these data suggest that RGC-32 is an important regulator of astrocyte differentiation during EAE and that in the absence of RGC-32, astrocytes are unable to fully mature and become reactive astrocytes.


Assuntos
Astrócitos/metabolismo , Proliferação de Células , Encefalomielite Autoimune Experimental/metabolismo , Proteínas Nucleares/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/patologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/patologia , Vimentina/metabolismo
10.
Clin Immunol ; 210: 108297, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698073

RESUMO

In this study, we investigated the role of JNK and phospho-Bcl-2 as possible biomarkers of multiple sclerosis (MS) relapse and of glatiramer acetate (GA) therapeutic response in relapsing-remitting MS patients. We enrolled a cohort of 15 GA-treated patients and measured the expression of JNK1, JNK2, phospho-JNK and phospho-Bcl-2 through Western blotting of lysates from peripheral blood mononuclear cells collected at 0, 3, 6, and 12 months after initiating GA therapy. We found significantly higher levels of JNK1 p54 and JNK2 p54 and significantly lower levels of p-Bcl-2 in relapse patients and in GA non-responders. By using receiver operating characteristic analysis, we found that the probability of accurately detecting relapse and response to GA was: 92% and 75.5%, respectively, for JNK1 p54 and 86% and 94.6%, respectively, for p-Bcl-2. Our data suggest that JNK1 and p-Bcl-2 could serve as potential biomarkers for MS relapse and the therapeutic response to GA.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Biomarcadores/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adolescente , Adulto , Idoso , Estudos de Coortes , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Acetato de Glatiramer/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Fosforilação , Valor Preditivo dos Testes , Adulto Jovem
11.
Immunol Res ; 67(2-3): 267-279, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31250246

RESUMO

The response gene to complement (RGC)-32 acts as a cell cycle regulator and mediator of TGF-ß effects. However, recent studies have revealed other functions for RGC-32 in diverse processes such as cellular migration, differentiation, and fibrosis. In addition to its induction by complement activation and the C5b-9 terminal complement complex, RGC-32 expression is also stimulated by growth factors, hormones, and cytokines. RGC-32 is induced by TGF-ß through Smad3 and RhoA signaling and plays an important role in cell differentiation. In particular, RGC-32 is essential for the differentiation of Th17 cells. RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype that is accompanied by decreased central nervous system inflammation and reductions in IL-17- and GM-CSF-producing CD4+ T cells. Accumulating evidence has drawn attention to the deregulated expression of RGC-32 in human cancers, atherogenesis, metabolic disorders, and autoimmune disease. Furthermore, RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases. A better understanding of the mechanism(s) by which RGC-32 contributes to the pathogenesis of all these diseases will provide new insights into its therapeutic potential.


Assuntos
Proteínas de Ciclo Celular/genética , Suscetibilidade a Doenças , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Animais , Biomarcadores , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais
12.
Front Immunol ; 10: 1054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156630

RESUMO

The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Suscetibilidade a Doenças , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Apoptose/genética , Apoptose/imunologia , Proliferação de Células , Ativação do Complemento/imunologia , Citotoxicidade Imunológica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Transdução de Sinais , Transcrição Gênica
13.
Exp Mol Pathol ; 108: 97-104, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986397

RESUMO

There is increasing awareness that in addition to the metabolic crisis of diabetic ketoacidosis (DKA) caused by severe insulin deficiency, the immune inflammatory response is likely an active multicomponent participant in both the acute and chronic insults of this medical crisis, with strong evidence of activation for both the cytokine and complement system. Recent studies report that the matrix metalloproteinase enzymes and their inhibitors are systemically activated in young Type 1 diabetes mellitus (T1D) patients during DKA and speculate on their involvement in blood-brain barrier (BBB) disruption. Based on our previous studies, we address the question if matrix metalloproteinase 9 (MMP9) is expressed in the brain in the fatal brain edema (BE) of DKA. Our data show significant expression of MMP9 on the cells present in brain intravascular areas. The presence of MMP9 in intravascular cells and that of MMP+ cells seen passing the BBB indicates a possible role in tight junction protein disruption of the BBB, possibly leading to neurological complications including BE. We have also shown that MMP9 is expressed on neurons in the hippocampal areas of both BE/DKA cases investigated, while expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was reduced in the same areas. We can speculate that intraneuronal MMP9 can be a sign of neurodegeneration. Further studies are necessary to determine the role of MMP9 in the pathogenesis of the neurologic catastrophe of the brain edema of DKA. Inhibition of MMP9 expression might be helpful in preserving neuronal function and BBB integrity during DKA.


Assuntos
Cetoacidose Diabética/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Adolescente , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Cetoacidose Diabética/mortalidade , Feminino , Hipocampo/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Neurônios/metabolismo , Junções Íntimas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Transcriptoma/genética
14.
Exp Mol Pathol ; 105(2): 175-180, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028960

RESUMO

We have previously shown that SIRT1 mRNA expression was significantly lower in relapsing MS patients compared to those in remission. Our goal was to longitudinally investigate the role of active, phosphorylated SIRT1 (p-SIRT1) as a potential biomarker of relapse and predictor for response to glatiramer acetate (GA) treatment in patients with relapsing remitting multiple sclerosis (MS). We also want to investigate the downstream effects of SIRT1 activation by measuring the trimethylation of histone 3 at lysine 9 (H3K9me3). A cohort of 15 GA-treated patients was clinically monitored using the Expanded Disability Status Scale (EDSS) and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 6, and 12 months after initiation of the therapy. P-SIRT1 and H3K9me3 levels were assayed by Western blotting using specific antibodies. Statistically significant lower levels of p-SIRT1 protein (p < 0.0001) and H3K9me3 (p = 0.001) were found during relapses when compared to stable MS patients. Non-responders to GA treatment were defined as patients who exhibited at least two relapses following initiation of GA treatment. Statistically significant lower levels of p-SIRT1 protein (p = 0.02) and H3K9me3 (p = 0.004) were found in GA non-responders compared to responders. Using receiver operating characteristic analysis, area under the curve (AUC) for p-SIRT1 was 77% (p = 0.007) and for H3K9me3 was 81% (p = 0.002) for prediction of relapse. For predicting responsiveness to GA treatment, AUC was 75% (P = 0.01) for H3K9me3. Our data suggest that p-SIRT1 and H3K9me3 could serve as potential biomarkers for MS relapse. In addition, H3K9me3 could serve as possible biomarker to predict response to GA treatment.


Assuntos
Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Sirtuína 1/metabolismo , Adulto , Biomarcadores Farmacológicos/metabolismo , Estudos de Coortes , Metilação de DNA , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/enzimologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fosforilação , Recidiva , Sirtuína 1/genética
15.
Immunol Res ; 66(4): 445-461, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30006805

RESUMO

Extracellular matrix (ECM) deposition in active demyelinating multiple sclerosis (MS) lesions may impede axonal regeneration and can modify immune reactions. Response gene to complement (RGC)-32 plays an important role in the mediation of TGF-ß downstream effects, but its role in gliosis has not been investigated. To gain more insight into the role played by RGC-32 in gliosis, we investigated its involvement in TGF-ß-induced ECM expression and the upregulation of the reactive astrocyte markers α-smooth muscle actin (α-SMA) and nestin. In cultured neonatal rat astrocytes, collagens I, IV, and V, fibronectin, α-SMA, and nestin were significantly induced by TGF-ß stimulation, and RGC-32 silencing resulted in a significant reduction in their expression. Using astrocytes isolated from RGC-32 knock-out (KO) mice, we found that the expression of TGF-ß-induced collagens I, IV, and V, fibronectin, and α-SMA was significantly reduced in RGC-32 KO mice when compared with wild-type (WT) mice. SIS3 inhibition of Smad3 phosphorylation was also associated with a significant reduction in RGC-32 nuclear translocation and TGF-ß-induced collagen I expression. In addition, during experimental autoimmune encephalomyelitis (EAE), RGC-32 KO mouse astrocytes displayed an elongated, bipolar phenotype, resembling immature astrocytes and glial progenitors whereas those from WT mice had a reactive, hypertrophied phenotype. Taken together, our data demonstrate that RGC-32 plays an important role in mediating TGF-ß-induced reactive astrogliosis in EAE. Therefore, RGC-32 may represent a new target for therapeutic intervention in MS.


Assuntos
Astrócitos/fisiologia , Encefalomielite Autoimune Experimental/metabolismo , Gliose/metabolismo , Esclerose Múltipla/metabolismo , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Colágenos Associados a Fibrilas , Humanos , Camundongos , Camundongos Knockout , Nestina/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Ratos , Fator de Crescimento Transformador beta/metabolismo
16.
Immunol Res ; 65(6): 1103-1109, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29116612

RESUMO

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The complement system has an established role in the pathogenesis of MS, and evidence suggests that its components can be used as biomarkers of disease-state activity and response to treatment in MS. Plasma C4a levels have been found to be significantly elevated in patients with active relapsing-remitting MS (RRMS), as compared to both controls and patients with stable RRMS. C3 levels are also significantly elevated in the cerebrospinal fluid (CSF) of patients with RRMS, and C3 levels are correlated with clinical disability. Furthermore, increased levels of factor H can predict the transition from relapsing to progressive disease, since factor H levels have been found to increase progressively with disease progression over a 2-year period in patients transitioning from RRMS to secondary progressive (SP) MS. In addition, elevations in C3 are seen in primary progressive (PP) MS. Complement components can also differentiate RRMS from neuromyelitis optica. Response gene to complement (RGC)-32, a novel molecule induced by complement activation, is a possible biomarker of relapse and response to glatiramer acetate (GA) therapy, since RGC-32 mRNA expression is significantly decreased during relapse and increased in responders to GA treatment. The predictive accuracy of RGC-32 as a potential biomarker (by ROC analysis) is 90% for detecting relapses and 85% for detecting a response to GA treatment. Thus, complement components can serve as biomarkers of disease activity to differentiate MS subtypes and to measure response to therapy.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Proteínas de Ciclo Celular/genética , Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla/diagnóstico , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Neuromielite Óptica/diagnóstico , Animais , Biomarcadores Farmacológicos/sangue , Proteínas de Ciclo Celular/metabolismo , Proteínas do Sistema Complemento/metabolismo , Diagnóstico Diferencial , Progressão da Doença , Humanos , Esclerose Múltipla/tratamento farmacológico , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo
17.
J Immunol ; 198(10): 3869-3877, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356385

RESUMO

Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-ß that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Células Th17/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiopatologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/deficiência , Proteínas Nucleares/farmacologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th17/patologia
18.
Exp Mol Pathol ; 102(2): 191-197, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28109694

RESUMO

SIRT1, a NAD dependent histone and protein deacetylase, is a member of the histone deacetylase class III family. We previously showed that SIRT1 mRNA expression is significantly lower in peripheral blood mononuclear cells (PBMCs) of multiple sclerosis (MS) patients during relapses than in stable patients. We have now investigated SIRT1 as a possible biomarker to predict relapse as well as responsiveness to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2years, a cohort of 15 GA-treated RRMS patients were clinically monitored using the Expanded Disability Status Scale and assessed for MS relapses. Blood samples collected from MS patients were analyzed for levels of SIRT1 and histone H3 lysine 9 (H3K9) acetylation and dimethylation. During relapses, MS patients had a lower expression of SIRT1 mRNA than did stable MS patients. In addition, there was a significant decrease in H3K9 dimethylation (H3K9me2) during relapses in MS patients when compared to stable patients (p=0.01). Responders to GA treatment had significantly higher SIRT1 mRNA (p=0.01) and H3K9me2 levels than did non-responders (p=0.018). Receiver operating characteristic analysis was used to assess the predictive power of SIRT1 and H3K9me2 as putative biomarkers: for SIRT1 mRNA, the predictive value for responsiveness to GA treatment was 70% (p=0.04) and for H3K9me2 was 71% (p=0.03). Our data suggest that SIRT1 and H3K9me2 could serve as potential biomarkers for evaluating patients' responsiveness to GA therapy in order to help guide treatment decisions in MS.


Assuntos
Acetato de Glatiramer/uso terapêutico , Histonas/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Sirtuína 1/metabolismo , Acetilação , Adulto , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Sirtuína 1/genética , Adulto Jovem
19.
Exp Mol Pathol ; 101(2): 221-230, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27619159

RESUMO

The complement system is an important player in the development of atherosclerosis. Previously reported as a cell cycle regulator, RGC-32 is an essential effector of the terminal complement complex, C5b-9. In this study, our aims were to determine the expression of RGC-32 in the human atherosclerotic arterial wall and to delineate the mechanisms through which RGC-32 affects C5b-9-induced endothelial cell proliferation and migration. We now demonstrate that RGC-32 is expressed in human aortic atherosclerotic wall and that RGC-32 expression increases with the progression of atherosclerosis. Furthermore, silencing of RGC-32 expression abolished C5b-9-induced human aortic endothelial cell (HAEC) proliferation and migration. Of the 279 genes differentially expressed in HAECs after RGC-32 silencing, the genes involved in cell adhesion and cell cycle activation were significantly regulated by RGC-32. RGC-32 silencing caused a significant reduction in the expression of cyclin D1, cyclin D3, Akt, ROCK1, Rho GDP dissociation inhibitor alpha and profilin. These data suggest that RGC-32 mediates HAEC migration through the regulation of RhoA and ROCK1 expression and is involved in actin cytoskeletal organization. Thus, RGC-32 has promising therapeutic potential with regard to angiogenesis and atherosclerosis.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aorta/metabolismo , Aterosclerose/genética , Western Blotting , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mitose , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
20.
J Immunol ; 196(4): 1529-40, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792801

RESUMO

IL-21 promotes B cell and CTL responses in vivo, conferring IL-21 with a role in both humoral and cellular responses. Because CTL can target and eliminate autoreactive B cells, we investigated whether IL-21R signaling in CD8 T cells would alter the expansion of autoreactive B cells in an autoimmune setting. We addressed this question using the parent→F1 murine model of acute and chronic (lupus-like) graft-versus-host disease (GVHD) as models of a CTL-mediated or T-dependent B cell-mediated response, respectively. Induction of acute GVHD using IL-21R-deficient donor T cells resulted in decreased peak donor CD8 T cell numbers and decreased CTL effector function due to impaired granzyme B/perforin and Fas/Fas ligand pathways and a phenotype of low-intensity chronic GVHD with persistent host B cells, autoantibody production, and mild lupus-like renal disease. CTL effector maturation was critically dependent on IL-21R signaling in Ag-specific donor CD8, but not CD4, T cells. Conversely, treatment of DBA/2J→F1 chronic GVHD mice with IL-21 strongly promoted donor CD8 T cell expansion and rescued defective donor anti-host CTLs, resulting in host B cell elimination, decreased autoantibody levels, and attenuated renal disease, despite evidence of concurrently enhanced CD4 help for B cells and heightened B cell activation. These results demonstrate that, in the setting of lupus-like CD4 T cell-driven B cell hyperactivity, IL-21 signaling on Ag-specific donor CD8 T cells is critical for CTL effector maturation, whereas a lack of IL-21R downregulates CTL responses that would otherwise limit B cell hyperactivity and autoantibody production.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Autoanticorpos/biossíntese , Linfócitos B/patologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Subunidade alfa de Receptor de Interleucina-21/deficiência , Subunidade alfa de Receptor de Interleucina-21/genética , Interleucinas/administração & dosagem , Lúpus Eritematoso Sistêmico/prevenção & controle , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos DBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA