Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38927452

RESUMO

Pigs as laboratory animals are used in preclinical studies aimed at developing medical devices for cardiac surgery. The anatomy of the cardiovascular system of these animals has been well studied and acknowledged as suitable for use and the testing of new cardiovascular devices developed for humans. However, there are no morphometric characteristics of the aortic root and thoraco-abdominal part of porcine aorta. This can lead to difficulties in experimental surgery and even result in the death of experimental animals due to the mismatch in the size of the implantable devices. Thus, such information is essential to enhance the efficiency of surgical technologies used for eliminating aortic pathologies in their various sections. The purpose of our research is to study the anatomy of the aorta in mini pigs and to assess whether the size, age, and sex of the animals affect the size of the main structures in their aortas. In addition, we attempted to compare the results obtained by transesophageal echocardiography (TEE) and angiography. We studied 28 laboratory mini pigs, dividing them into three groups by body weight (40-70 kg, 71-90 kg, and 90 kg). We did not find any relationship between the external somatometric characteristics of the animals and the size of their aortas. Animals have individual anatomical variability in their cardiovascular systems, which means that they need to be examined in terms of preoperative planning by any available method-echocardiography, angiography, or multispiral computed tomography (CT).

2.
Biomedicines ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002101

RESUMO

Valved conduits are often required to replace pulmonary arteries (PA). A widely used Contegra device is made of bovine jugular vein (BJV), preserved with glutaraldehyde (GA) and iso-propanol. However, it has several drawbacks that may be attributed to its chemical treatment. We hypothesized that the use of an alternative preservation compound may significantly improve BJV conduit performance. This study aimed to compare the macroscopic and microscopic properties of the BJV treated with diepoxide (DE) and GA in a porcine model. Twelve DE-BJVs and four Contegra conduits were used for PA replacement in minipigs. To assess the isolated influence of GA, we included an additional control group-BJV treated with 0.625% GA (n = 4). The animals were withdrawn after 6 months of follow-up and the conduits were examined. Explanted DE-BJV had a soft elastic wall with no signs of thrombosis or calcification and good conduit integration, including myofibroblast germination, an ingrowth of soft connective tissue formations and remarkable neoangiogenesis. The inner surface of DE-BJVs was covered by a thin neointimal layer with a solid endothelium. Contegra grafts had a stiffer wall with thrombosis on the leaflets. Calcified foci, chondroid metaplasia, and hyalinosis were observed within the wall. The distal anastomotic sites had hyperplastic neointima, partially covered with the endothelium. The wall of GA-BJV was stiff and rigid with degenerative changes, a substantial amount of calcium deposits and dense fibrotic formations in adventitia. An irregular neointimal layer was presented in the anastomotic sites without endothelial cover in the GA BJV wall. These results demonstrate that DE treatment improves conduit integration and the endothelialization of the inner surface while preventing the mineralization of the BJV, which may reduce the risk of early conduit dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA