Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 376: 114753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490317

RESUMO

Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco , Acidente Vascular Cerebral , Animais , Humanos , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco/métodos
2.
Brain Pathol ; : e13232, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198833

RESUMO

The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to Apobec1, Cenpf, Ect2, Folr2, Glipr1, Myo1f, and Pttg1. New genes that failed to upregulate in the adult post-stroke brain include Bex4, Cd24, Klhl1/Mrp2, Trim67, and St8sia2. Among the upregulated pathways, the largest change was observed in the KEGG pathway "One carbon pool of folate," which is necessary for cellular proliferation, followed by the KEGG pathway "Antifolate resistance," whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.

3.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445979

RESUMO

Ischemic stroke, a significant neurovascular disorder, currently lacks effective restorative medication. However, recently developed nanomedicines bring renewed promise for alleviating ischemia's effects and facilitating the healing of neurological and physical functions. The aim of this systematic review was to evaluate the efficacy of nanotherapies in animal models of stroke and their potential impact on future stroke therapies. We also assessed the scientific quality of current research focused on nanoparticle-based treatments for ischemic stroke in animal models. We summarized the effectiveness of nanotherapies in these models, considering multiple factors such as their anti-inflammatory, antioxidant, and angiogenetic properties, as well as their safety and biodistribution. We conclude that the application of nanomedicines may reduce infarct size and improve neurological function post-stroke without causing significant organ toxicity.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Acidente Vascular Cerebral , Animais , Distribuição Tecidual , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Anti-Inflamatórios , Nanopartículas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico
4.
Subcell Biochem ; 103: 437-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120476

RESUMO

Ageing is generally characterised by the declining ability to respond to stress, increasing homeostatic imbalance, and increased risk of ageing-associated diseases . Mechanistically, the lifelong accumulation of a wide range of molecular and cellular impairments leads to organismal senescence. The aging population poses a severe medical concern due to the burden it places on healthcare systems and the general public as well as the prevalence of diseases and impairments associated with old age. In this chapter, we discuss organ failure during ageing as well as ageing of the hypothalamic-pituitary-adrenal axis and drugs that can regulate it. A much-debated subject is about ageing and regeneration. With age, there is a gradual decline in the regenerative properties of most tissues. The goal of regenerative medicine is to restore cells, tissues, and structures that are lost or damaged after disease, injury, or ageing. The question arises as to whether this is due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell function in the aged tissue environment. The risk of having a stroke event doubles each decade after the age of 55. Therefore, it is of great interest to develop neurorestorative therapies for stroke which occurs mostly in elderly people. Initial enthusiasm for stimulating restorative processes in the ischaemic brain with cell-based therapies has meanwhile converted into a more balanced view, recognising impediments related to survival, migration, differentiation, and integration of therapeutic cells in the hostile aged brain environment. Therefore, a current lack of understanding of the fate of transplanted cells means that the safety of cell therapy in stroke patients is still unproven. Another issue associated with ischaemic stroke is that patients at risk for these sequels of stroke are not duly diagnosed and treated due to the lack of reliable biomarkers. However, recently neurovascular unit-derived exosomes in response to Stroke and released into serum are new plasma genetic and proteomic biomarkers associated with ischaemic stroke. The second valid option, which is also more economical, is to invest in prevention.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Humanos , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/terapia , Sistema Hipotálamo-Hipofisário , Proteômica , Sistema Hipófise-Suprarrenal , Envelhecimento/fisiologia
5.
Geroscience ; 44(1): 293-310, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757568

RESUMO

Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) promote neurological recovery after middle cerebral artery occlusion (MCAO) in young rodents. Ischemic stroke mainly affects aged humans. MSC-sEV effects on stroke recovery in aged rodents had not been assessed. In a head-to-head comparison, we exposed young (4-5 months) and aged (19-20 months) male Sprague-Dawley rats to permanent distal MCAO. At 24 h, 3 and 7 days post-stroke, vehicle or MSC-sEVs (2 × 106 or 2 × 107 MSC equivalents/kg) were intravenously administered. Neurological deficits, ischemic injury, brain inflammatory responses, post-ischemic angiogenesis, and endogenous neurogenesis were evaluated over 28 days. Post-MCAO, aged vehicle-treated rats exhibited more severe motor-coordination deficits evaluated by rotating pole and cylinder tests and larger brain infarcts than young vehicle-treated rats. Although infarct volume was not influenced by MSC-sEVs, sEVs at both doses effectively reduced motor-coordination deficits in young and aged rats. Brain macrophage infiltrates in periinfarct tissue, which were evaluated as marker of a recovery-aversive inflammatory environment, were significantly stronger in aged than young vehicle-treated rats. sEVs reduced brain macrophage infiltrates in aged, but not young rats. The tolerogenic shift in immune balance paved the way for structural brain tissue remodeling. Hence, sEVs at both doses increased periinfarct angiogenesis evaluated by CD31/BrdU immunohistochemistry in young and aged rats, and low-dose sEVs increased neurogenesis in the subventricular zone examined by DCX/BrdU immunohistochemistry. Our study provides robust evidence that MSC-sEVs promote functional neurological recovery and brain tissue remodeling in aged rats post-stroke. This study encourages further proof-of-concept studies in clinic-relevant stroke settings.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA