Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Fungi (Basel) ; 9(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37998895

RESUMO

Aspergillus versicolor is ubiquitous in the environment and is particularly abundant in damp indoor spaces. Exposure to Aspergillus species, as well as other environmental fungi, has been linked to respiratory health outcomes, including asthma, allergy, and even local or disseminated infection. However, the pulmonary immunological mechanisms associated with repeated exposure to A. versicolor have remained relatively uncharacterized. Here, A. versicolor was cultured and desiccated on rice then placed in an acoustical generator system to achieve aerosolization. Mice were challenged with titrated doses of aerosolized conidia to examine deposition, lymphoproliferative properties, and immunotoxicological response to repeated inhalation exposures. The necessary dose to induce lymphoproliferation was identified, but not infection-like pathology. Further, it was determined that the dose was able to initiate localized immune responses. The data presented in this study demonstrate an optimized and reproducible method for delivering A. versicolor conidia to rodents via nose-only inhalation. Additionally, the feasibility of a long-term repeated exposure study was established. This experimental protocol can be used in future studies to investigate the physiological effects of repeated pulmonary exposure to fungal conidia utilizing a practical and relevant mode of delivery. In total, these data constitute an important foundation for subsequent research in the field.

3.
Sci Adv ; 9(28): eadh2264, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450601

RESUMO

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Camundongos , Febre do Vale de Rift/genética , Vírus da Febre do Vale do Rift/genética , África , Hepatócitos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
4.
Front Cell Infect Microbiol ; 13: 1067475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864880

RESUMO

Background: Allergic airway disease (AAD) is a growing concern in industrialized nations and can be influenced by fungal exposures. Basidiomycota yeast species such as Cryptococcus neoformans are known to exacerbate allergic airway disease; however, recent indoor assessments have identified other Basidiomycota yeasts, including Vishniacozyma victoriae (syn. Cryptococcus victoriae), to be prevalent and potentially associated with asthma. Until now, the murine pulmonary immune response to repeated V. victoriae exposure was previously unexplored. Objective: This study aimed to compare the immunological impact of repeated pulmonary exposure to Cryptococcus yeasts. Methods: Mice were repeatedly exposed to an immunogenic dose of C. neoformans or V. victoriae via oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were collected to examine airway remodeling, inflammation, mucous production, cellular influx, and cytokine responses at 1 day and 21 days post final exposure. The responses to C. neoformans and V. victoriae were analyzed and compared. Results: Following repeated exposure, both C. neoformans and V. victoriae cells were still detectable in the lungs 21 days post final exposure. Repeated C. neoformans exposure initiated myeloid and lymphoid cellular infiltration into the lung that worsened over time, as well as an IL-4 and IL-5 response compared to PBS-exposed controls. In contrast, repeated V. victoriae exposure induced a strong CD4+ T cell-driven lymphoid response that started to resolve by 21 days post final exposure. Discussion: C. neoformans remained in the lungs and exacerbated the pulmonary immune responses as expected following repeated exposure. The persistence of V. victoriae in the lung and strong lymphoid response following repeated exposure were unexpected given its lack of reported involvement in AAD. Given the abundance in indoor environments and industrial utilization of V. victoriae, these results highlight the importance to investigate the impact of frequently detected fungal organisms on the pulmonary response following inhalational exposure. Moreover, it is important to continue to address the knowledge gap involving Basidiomycota yeasts and their impact on AAD.


Assuntos
Basidiomycota , Criptococose , Cryptococcus neoformans , Hipersensibilidade , Animais , Camundongos , Filogenia
5.
J Expo Sci Environ Epidemiol ; 32(1): 48-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091598

RESUMO

BACKGROUND: Indoor environments contain a broad diversity of non-pathogenic Basidiomycota yeasts, but their role in exacerbating adverse health effects has remained unclear. OBJECTIVE: To understand the role of Vishniacozyma victoriae exposure and its impact on human health. METHODS: A qPCR assay was developed to detect and quantify an abundant indoor yeast species, Vishniacozyma victoriae (syn. Cryptococcus victoriae), from homes participating in the New York City Neighborhood Asthma and Allergy Study (NAAS). We evaluated the associations between V. victoriae, housing characteristics, and asthma relevant health endpoints. RESULTS: V. victoriae was quantified in 236 of the 256 bedroom floor dust samples ranging from less than 300-45,918 cell equivalents/mg of dust. Higher concentrations of V. victoriae were significantly associated with carpeted bedroom floors (P = 0.044), mean specific humidity (P = 0.004), winter (P < 0.0001) and spring (P = 0.001) seasons, and the presence of dog (P = 0.010) and dog allergen Can f 1 (P = 0.027). V. victoriae concentrations were lower in homes of children with asthma vs. without asthma (P = 0.027), an association observed only among the non-seroatopic children.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Basidiomycota , Poluição do Ar em Ambientes Fechados/análise , Alérgenos/efeitos adversos , Alérgenos/análise , Animais , Antígenos de Dermatophagoides/análise , Asma/induzido quimicamente , Cães , Poeira/análise , Habitação , Humanos , Cidade de Nova Iorque
6.
Build Environ ; 170: 1-16, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32055099

RESUMO

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

7.
Mol Microbiol ; 101(4): 625-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146086

RESUMO

More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.


Assuntos
Actinobacteria/virologia , Bacteriófagos/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Sequência de Bases/genética , Sequência de Bases/fisiologia , Centrômero/metabolismo , Segregação de Cromossomos/genética , Cromossomos Bacterianos , Lisogenia , Mutagênese Insercional , Plasmídeos/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA