Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922897

RESUMO

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.

2.
Biomolecules ; 13(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371577

RESUMO

Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.


Assuntos
Insetos , Praguicidas , Animais , Produtos Agrícolas , Produção Agrícola , Feromônios/farmacologia
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36795638

RESUMO

The reproductive success of flowering plants with generalized pollination systems is influenced by interactions with a diverse pollinator community and abiotic factors. However, knowledge about the adaptative potential of plants to complex ecological networks and the underlying genetic mechanisms is still limited. Based on a pool-sequencing approach of 21 natural populations of Brassica incana in Southern Italy, we combined a genome-environmental association analysis with a genome scan for signals of population genomic differentiation to discover genetic variants associated with the ecological variation. We identified genomic regions putatively involved in the adaptation of B. incana to the identity of local pollinator functional categories and pollinator community composition. Interestingly, we observed several shared candidate genes associated with long-tongue bees, soil texture, and temperature variation. We established a genomic map of potential generalist flowering plant local adaptation to complex biotic interactions, and the importance of considering multiple environmental factors to describe the adaptive landscape of plant populations.


Assuntos
Flores , Magnoliopsida , Abelhas/genética , Animais , Flores/genética , Plantas , Adaptação Fisiológica/genética , Polinização , Reprodução
4.
Plant Cell Environ ; 46(3): 931-945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36514238

RESUMO

Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.


Assuntos
Solo , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Polinização , Flores/anatomia & histologia , Insetos , Herbivoria
5.
New Phytol ; 233(6): 2548-2560, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953172

RESUMO

The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.


Assuntos
Flores , Herbivoria , Flores/fisiologia , Mostardeira/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo
6.
Nat Plants ; 7(10): 1347-1353, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34650263

RESUMO

Plants have evolved plastic defence strategies to deal with the uncertainty of when, by which species and in which order attack by herbivores will take place1-3. However, the responses to current herbivore attack may come with a cost of compromising resistance to other, later arriving herbivores. Due to antagonistic cross-talk between physiological regulation of plant resistance to phloem-feeding and leaf-chewing herbivores4-8, the feeding guild of the initial herbivore is considered to be the primary factor determining whether resistance to subsequent attack is compromised. We show that, by investigating 90 pairwise insect-herbivore interactions among ten different herbivore species, resistance of the annual plant Brassica nigra to a later arriving herbivore species is not explained by feeding guild of the initial attacker. Instead, the prevalence of herbivore species that arrive on induced plants as approximated by three years of season-long insect community assessments in the field explained cross-resistance. Plants maintained resistance to prevalent herbivores in common patterns of herbivore arrival and compromises in resistance especially occurred for rare patterns of herbivore attack. We conclude that plants tailor induced defence strategies to deal with common patterns of sequential herbivore attack and anticipate arrival of the most prevalent herbivores.


Assuntos
Adaptação Biológica , Herbivoria , Insetos/fisiologia , Mostardeira/fisiologia , Defesa das Plantas contra Herbivoria , Animais , Floema/fisiologia , Especificidade da Espécie
7.
J Ecol ; 108(3): 1046-1060, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32421019

RESUMO

Plants show ontogenetic variation in growth-defence strategies to maximize reproductive output within a community context. Most work on plant ontogenetic variation in growth-defence trade-offs has focussed on interactions with antagonistic insect herbivores. Plants respond to herbivore attack with phenotypic changes. Despite the knowledge that plant responses to herbivory affect plant mutualistic interactions with pollinators required for reproduction, indirect interactions between herbivores and pollinators have not been included in the evaluation of how ontogenetic growth-defence trajectories affect plant fitness.In a common garden experiment with the annual Brassica nigra, we investigated whether exposure to various herbivore species on different plant ontogenetic stages (vegetative, bud or flowering stage) affects plant flowering traits, interactions with flower visitors and results in fitness consequences for the plant.Effects of herbivory on flowering plant traits and interactions with flower visitors depended on plant ontogeny. Plant exposure in the vegetative stage to the caterpillar Pieris brassicae and aphid Brevicoryne brassicae led to reduced flowering time and flower production, and resulted in reduced pollinator attraction, pollen beetle colonization, total seed production and seed weight. When plants had buds, infestation by most herbivore species tested reduced flower production and pollen beetle colonization. Pollinator attraction was either increased or reduced. Plants infested in the flowering stage with P. brassicae or Lipaphis erysimi flowered longer, while infestation by any of the herbivore species tested increased the number of flower visits by pollinators.Our results show that the outcome of herbivore-flower visitor interactions in B. nigra is specific for the combination of herbivore species and plant ontogenetic stage. Consequences of herbivory for flowering traits and reproductive output were strongest when plants were attacked early in life. Such differences in selection pressures imposed by herbivores to specific plant ontogenetic stages may drive the evolution of distinct ontogenetic trajectories in growth-defence-reproduction strategies and include indirect interactions between herbivores and flower visitors. Synthesis. Plant ontogeny can define the direct and indirect consequences of herbivory. Our study shows that the ontogenetic stage of plant individuals determined the effects of herbivory on plant flowering traits, interactions with flower visitors and plant fitness.

8.
Oecologia ; 191(4): 887-896, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686227

RESUMO

Herbivore attack can alter plant interactions with pollinators, ranging from reduced to enhanced pollinator visitation. The direction and strength of effects of herbivory on pollinator visitation could be contingent on the type of plant tissue or organ attacked by herbivores, but this has seldom been tested experimentally. We investigated the effect of variation in feeding site of herbivorous insects on the visitation by insect pollinators on flowering Brassica nigra plants. We placed herbivores on either leaves or flowers, and recorded the responses of two pollinator species when visiting flowers. Our results show that variation in herbivore feeding site has profound impact on the outcome of herbivore-pollinator interactions. Herbivores feeding on flowers had consistent positive effects on pollinator visitation, whereas herbivores feeding on leaves did not. Herbivores themselves preferred to feed on flowers, and mostly performed best on flowers. We conclude that herbivore feeding site choice can profoundly affect herbivore-pollinator interactions and feeding site thereby makes for an important herbivore trait that can determine the linkage between antagonistic and mutualistic networks.


Assuntos
Herbivoria , Polinização , Animais , Flores , Insetos , Folhas de Planta
9.
Trends Plant Sci ; 24(8): 725-740, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31204246

RESUMO

Plant phenotypic plasticity in response to herbivore attack includes changes in flower traits. Such herbivore-induced changes in flower traits have consequences for interactions with flower visitors. We synthesize here current knowledge on the specificity of herbivore-induced changes in flower traits, the underlying molecular mechanisms, and the ecological consequences for flower-associated communities. Herbivore-induced changes in flower traits seem to be largely herbivore species-specific. The extensive plasticity observed in flowers influences a highly connected web of interactions within the flower-associated community. We argue that the adaptive value of herbivore-induced plant responses and flower plasticity can be fully understood only from a community perspective rather than from pairwise interactions.


Assuntos
Plásticos , Polinização , Ecologia , Flores , Plantas
10.
Curr Opin Insect Sci ; 32: 54-60, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113632

RESUMO

Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels.


Assuntos
Comportamento Apetitivo , Insetos/fisiologia , Insetos/parasitologia , Animais , Sinais (Psicologia) , Cadeia Alimentar , Herbivoria , Plantas/química , Compostos Orgânicos Voláteis
11.
Plant Cell Environ ; 42(6): 1882-1896, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659631

RESUMO

Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant-pollinator interactions. Current knowledge on the full extent of herbivore-induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore-induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species-specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant-mediated interactions with mutualists.


Assuntos
Adaptação Fisiológica/fisiologia , Flores/fisiologia , Herbivoria , Insetos/fisiologia , Magnoliopsida/fisiologia , Polinização/fisiologia , Animais , Flores/anatomia & histologia , Mostardeira/fisiologia , Óleos Voláteis/metabolismo , Fenótipo , Pólen , Especificidade da Espécie , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA