Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 26(3): 625-631, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899181

RESUMO

Gold nanoparticles (GNPs) are among the ideal nano-sized materials for medical applications such as imaging and drug delivery. Considering the significance of recent reports on acute phase induction of inflammatory mediators by GNPs, we studied the effect of GNPs on proinflammatory cytokines gene expression in mouse brain. Group 1 served as control whereas groups 2-4 were given only one intraperitoneal dose of 5, 20 and 50 nm GNPs, respectively and sacrificed after 24 h. The animals in groups 5-7 also received the same treatment but sacrificed after 7 days. Groups 8-10 received two injections of GNPs (5, 20 and 50 nm, respectively), first at the beginning of study and second on day 6, and sacrificed on day 7. Total RNA was extracted from the cerebral tissue and analyzed for the gene expressions of IL-1ß, IL-6 and TNF-α. A single injection of 5 nm diameter GNPs significantly increased the mRNA expression of IL-1ß and IL-6 in mouse brain on day 7, which was not augmented by the second dose of the same GNPs. Larger size GNPs (20 nm and 50 nm) did not cause any significant change in the expression of proinflammatory cytokines in mouse brain. In conclusion, systemic administration of small sized GNPs (5 nm) induced a proinflammatory cascade in mouse brain indicating a crucial role of GNPs size on immune response. It is important to use the right sized GNPs in order to avoid an acute phase inflammatory response that could be cytotoxic or interfere with the bioavailability of nanomaterials.

2.
Materials (Basel) ; 11(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424494

RESUMO

In this work, nanocrystalline Ge1-xSnx alloy formation from a rapid thermal annealed Ge/Sn/Ge multilayer has been presented. The multilayer was magnetron sputtered onto the Silicon substrate. This was followed by annealing the layers by rapid thermal annealing, at temperatures of 300 °C, 350 °C, 400 °C, and 450 °C, for 10 s. Then, the effect of thermal annealing on the morphological, structural, and optical characteristics of the synthesized Ge1-xSnx alloys were investigated. The nanocrystalline Ge1-xSnx formation was revealed by high-resolution X-ray diffraction (HR-XRD) measurements, which showed the orientation of (111). Raman results showed that phonon intensities of the Ge-Ge vibrations were improved with an increase in the annealing temperature. The results evidently showed that raising the annealing temperature led to improvements in the crystalline quality of the layers. It was demonstrated that Ge-Sn solid-phase mixing had occurred at a low temperature of 400 °C, which led to the creation of a Ge1-xSnx alloy. In addition, spectral photo-responsivity of a fabricated Ge1-xSnx metal-semiconductor-metal (MSM) photodetector exhibited its extending wavelength into the near-infrared region (820 nm).

3.
J Nanosci Nanotechnol ; 10(10): 6419-23, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137740

RESUMO

Zinc oxide (ZnO) is an emerging optoelectronic material in large area electronic applications due to its various functional behaviors. We present the fabrication and the characterization of ZnO nanorods. The ZnO nanorods were synthesized using sol-gel hydrothermal technique on oxidized silicon substrates. Different post-annealing temperatures were explored in the sol-gel hydrothermal synthesis of the ZnO nanorods. The surface morphology of the ZnO nanorods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO nanorods were measured using X-ray diffractometer (XRD). The optical properties were measured using ultraviolet-visible (UV-Vis) spectroscopy. The influence of the post-annealing temperature on the realized ZnO nanorods will be revealed and discussed in this paper.

4.
J Nanosci Nanotechnol ; 10(9): 5618-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21133082

RESUMO

Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA