Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(6): 2219-2227, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37300508

RESUMO

Recent developments in aptamer chemistry open up opportunities for new tools for protein biosensing. In this work, we present an approach to use immobilized slow off-rate modified aptamers (SOMAmers) site-specifically labeled with a nitroxide radical via azide-alkyne click chemistry as a means for detecting protein binding. Protein binding induces a change in rotational mobility of the spin label, which is detected via solution-state electron paramagnetic resonance (EPR) spectroscopy. We demonstrate the workflow and test the protocol using the SOMAmer SL5 and its protein target, platelet-derived growth factor B (PDGF-BB). In a complete site scan of the nitroxide over the SOMAmer, we determine the rotational mobility of the spin label in the absence and presence of target protein. Several sites with sufficiently tight affinity and large rotational mobility change upon protein binding are identified. We then model a system where the spin-labeled SOMAmer assay is combined with fluorescence detection via diamond nitrogen-vacancy (NV) center relaxometry. The NV center spin-lattice relaxation time is modulated by the rotational mobility of a proximal spin label and thus responsive to SOMAmer-protein binding. The spin label-mediated assay provides a general approach for transducing protein binding events into magnetically detectable signals.


Assuntos
Oligonucleotídeos , Proteínas , Marcadores de Spin , Ligação Proteica , Espectroscopia de Ressonância de Spin Eletrônica/métodos
2.
J Clin Microbiol ; 55(10): 3057-3071, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28794177

RESUMO

New non-sputum biomarker tests for active tuberculosis (TB) diagnostics are of the highest priority for global TB control. We performed in-depth proteomic analysis using the 4,000-plex SOMAscan assay on 1,470 serum samples from seven countries where TB is endemic. All samples were from patients with symptoms and signs suggestive of active pulmonary TB that were systematically confirmed or ruled out for TB by culture and clinical follow-up. HIV coinfection was present in 34% of samples, and 25% were sputum smear negative. Serum protein biomarkers were identified by stability selection using L1-regularized logistic regression and by Kolmogorov-Smirnov (KS) statistics. A naive Bayes classifier using six host response markers (HR6 model), including SYWC, kallistatin, complement C9, gelsolin, testican-2, and aldolase C, performed well in a training set (area under the sensitivity-specificity curve [AUC] of 0.94) and in a blinded verification set (AUC of 0.92) to distinguish TB and non-TB samples. Differential expression was also highly significant (P < 10-20) for previously described TB markers, such as IP-10, LBP, FCG3B, and TSP4, and for many novel proteins not previously associated with TB. Proteins with the largest median fold changes were SAA (serum amyloid protein A), NPS-PLA2 (secreted phospholipase A2), and CA6 (carbonic anhydrase 6). Target product profiles (TPPs) for a non-sputum biomarker test to diagnose active TB for treatment initiation (TPP#1) and for a community-based triage or referral test (TPP#2) have been published by the WHO. With 90% sensitivity and 80% specificity, the HR6 model fell short of TPP#1 but reached TPP#2 performance criteria. In conclusion, we identified and validated a six-marker signature for active TB that warrants diagnostic development on a patient-near platform.


Assuntos
Proteínas Sanguíneas/análise , Complemento C9/metabolismo , Frutose-Bifosfato Aldolase/sangue , Gelsolina/sangue , Proteoglicanas/sangue , Serpinas/sangue , Tuberculose Pulmonar/diagnóstico , Antígenos de Bactérias/sangue , Biomarcadores/sangue , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Proteômica , Sensibilidade e Especificidade , Tuberculose Pulmonar/microbiologia
3.
J Clin Microbiol ; 55(10): 3072-3088, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28794178

RESUMO

Direct pathogen detection in blood to diagnose active tuberculosis (TB) has been difficult due to low levels of circulating antigens or due to the lack of specific, high-affinity binding reagents and reliable assays with adequate sensitivity. We sought to determine whether slow off-rate modified aptamer (SOMAmer) reagents with subnanomolar affinity for Mycobacterium tuberculosis proteins (antigens 85A, 85B, 85C, GroES, GroEL2, DnaK, CFP10, KAD, CFP2, RplL, and Tpx) could be useful to diagnose tuberculosis. When incorporated into the multiplexed, array-based proteomic SOMAscan assay, limits of detection reached the subpicomolar range in 40% serum. Binding to native M. tuberculosis proteins was confirmed by using M. tuberculosis culture filtrate proteins and fractions from infected macrophages and via affinity capture assays and subsequent mass spectrometry. Comparison of serum from culture-positive pulmonary TB patients and TB suspects systematically ruled out for TB revealed small but statistically significant (P < 0.0001) differences in the median M. tuberculosis signals and in specific pathogen markers, such as antigen 85B. Samples where many M. tuberculosis aptamers produced high signals were rare exceptions. In concentrated, protein-normalized urine from TB patients and non-TB controls, the CFP10 (EsxB) SOMAmer yielded the most significant differential signals (P < 0.0276), particularly in TB patients with HIV coinfection. In conclusion, direct M. tuberculosis antigen detection proved difficult even with a sensitive method such as SOMAscan, likely due to their very low, subpicomolar abundance. The observed differences between cases and controls had limited diagnostic utility in serum and urine, but further evaluation of M. tuberculosis SOMAmers using other platforms and sample types is warranted.


Assuntos
Aciltransferases/análise , Antígenos de Bactérias/análise , Aptâmeros de Peptídeos/metabolismo , Proteínas de Bactérias/sangue , Proteínas de Bactérias/urina , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/diagnóstico , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/análise , Humanos , Testes Imunológicos/métodos , Ligação Proteica/fisiologia , Tuberculose Pulmonar/microbiologia
4.
Mol Microbiol ; 99(3): 586-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26480895

RESUMO

HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA). Previous studies established that, like the human orthologue HtrA1, BbHtrA is proteolytically active against numerous extracellular proteins in vitro. In this study, we utilized size exclusion chromatography and blue native polyacrylamide gel electrophoresis (BN-PAGE) to demonstrate BbHtrA oligomeric structures that were substrate independent and salt sensitive. Examination of the influence of transition metals on the activity of BbHtrA revealed that this protease is inhibited by Zn(2+) > Cu(2+) > Mn(2+). Extending this analysis to two other HtrA proteases, E. coli DegP and HtrA1, revealed that all three HtrA proteases were reversibly inhibited by ZnCl2 at all micro molar concentrations examined. Commercial inhibitors for HtrA proteases are not available and physiologic HtrA inhibitors are unknown. Our observation of conserved zinc inhibition of HtrA proteases will facilitate structural and functional studies of additional members of this important class of proteases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , Cloretos/metabolismo , Inibidores Enzimáticos/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Compostos de Zinco/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Cloretos/química , Inibidores Enzimáticos/química , Humanos , Cinética , Doença de Lyme/microbiologia , Serina Endopeptidases/genética , Zinco/química , Compostos de Zinco/química
5.
PLoS One ; 10(6): e0128868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076465

RESUMO

Borrelia burgdorferi synthesizes an HtrA protease (BbHtrA) which is a surface-exposed, conserved protein within Lyme disease spirochetes with activity toward CheX and BmpD of Borrelia spp, as well as aggrecan, fibronectin and proteoglycans found in skin, joints and neural tissues of vertebrates. An antibody response against BbHtrA is observed in Lyme disease patients and in experimentally infected laboratory mice and rabbits. Given the surface location of BbHtrA on B. burgdorferi and its ability to elicit an antibody response in infected hosts, we explored recombinant BbHtrA as a potential vaccine candidate in a mouse model of tick-transmitted Lyme disease. We immunized mice with two forms of BbHtrA: the proteolytically active native form and BbHtrA ablated of activity by a serine to alanine mutation at amino acid 226 (BbHtrA(S226A)). Although inoculation with either BbHtrA or BbHtrA(S226A) produced high-titer antibody responses in C3H/HeJ mice, neither antigen was successful in protecting mice from B. burgdorferi challenge. These results indicate that the search for novel vaccine candidates against Lyme borreliosis remains a challenge.


Assuntos
Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/imunologia , Serina Endopeptidases/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Doença de Lyme/prevenção & controle , Camundongos
6.
Mol Syst Biol ; 11(1): 783, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25680807

RESUMO

Understanding the functions of multi-cellular organs in terms of the molecular networks within each cell is an important step in the quest to predict phenotype from genotype. B-lymphocyte population dynamics, which are predictive of immune response and vaccine effectiveness, are determined by individual cells undergoing division or death seemingly stochastically. Based on tracking single-cell time-lapse trajectories of hundreds of B cells, single-cell transcriptome, and immunofluorescence analyses, we constructed an agent-based multi-modular computational model to simulate lymphocyte population dynamics in terms of the molecular networks that control NF-κB signaling, the cell cycle, and apoptosis. Combining modeling and experimentation, we found that NF-κB cRel enforces the execution of a cellular decision between mutually exclusive fates by promoting survival in growing cells. But as cRel deficiency causes growing B cells to die at similar rates to non-growing cells, our analysis reveals that the phenomenological decision model of wild-type cells is rooted in a biased race of cell fates. We show that a multi-scale modeling approach allows for the prediction of dynamic organ-level physiology in terms of intra-cellular molecular networks.


Assuntos
Linfócitos B/citologia , Divisão Celular , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Animais , Apoptose , Linfócitos B/metabolismo , Proliferação de Células , Camundongos , Modelos Moleculares , Análise de Sequência de RNA , Transdução de Sinais , Baço/citologia
8.
J Clin Microbiol ; 52(3): 721-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23946519

RESUMO

A novel method of culturing spirochetes from the serum of U.S. Lyme disease patients was recently reported by Sapi and colleagues to have 94% sensitivity and 100% specificity for Borrelia species as assessed by microscopy and DNA sequence analysis of the pyrG gene (E. Sapi, N. Pabbati, A. Datar, E. M. Davies, A. Rattelle, and B. A. Kuo, Int. J. Med. Sci. 10:362-376, 2013). The majority of the spirochetes described were related by pyrG sequences to species of Borrelia previously undetected in North American patients without a reported history of travel to Europe or Asia. To better understand these unexpected findings, we determined pyrG sequences of the laboratory reference strains used by the investigators for method development and testing of culture medium. Eighty percent (41/51) of the reported patient-derived pyrG sequences were identical to one of the laboratory strains, and an additional 12% (6/51) differed by only a single nucleotide across a 603-bp region of the pyrG gene. Thus, false positivity due to laboratory contamination of patient samples cannot be ruled out, and further validation of the proposed novel culture method is required.


Assuntos
Técnicas Bacteriológicas/métodos , Borrelia/classificação , Borrelia/isolamento & purificação , Doença de Lyme/diagnóstico , Soro/microbiologia , Proteínas de Bactérias/genética , Borrelia/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Reações Falso-Positivas , Humanos , Doença de Lyme/microbiologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos
9.
Mol Microbiol ; 90(2): 241-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23980719

RESUMO

The Lyme disease spirochaete, Borrelia burgdorferi, causes damage to diverse host tissues and induces inflammation but the mechanisms of injury are poorly understood. We recently reported that a surface-exposed B. burgdorferi protease, which is expressed during human disease and is conserved within the major Lyme disease spirochaete species, degrades the extracellular matrix proteoglycan, aggrecan. Here we demonstrate that BbHtrA also degrades fibronectin and numerous proteoglycans found in skin, joints and neural tissues. BbHtrA degradation of fibronectin released known pro-inflammatory fibronectin fragments FnIII(13-14) and Fnf-29, which may amplify the inflammatory processes triggered by the presence of the bacteria. When this hypothesis was tested directly by exposing chondrocytes to BbHtrA in vitro, inflammatory cytokines (sICAM-1 and IL-6) and chemokines (CXCL1, CCL1, CCL2 and CCL5) that are hallmarks of Lyme disease were induced. These results provide the first evidence that, by utilizing BbHtrA, B. burgdorferi may actively participate in its dissemination and in the tissue damage and inflammation observed in Lyme disease.


Assuntos
Borrelia burgdorferi/metabolismo , Citocinas/imunologia , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Inflamação/imunologia , Doença de Lyme/microbiologia , Proteoglicanas/metabolismo , Serina Proteases/metabolismo , Agrecanas/metabolismo , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Humanos , Inflamação/metabolismo , Articulações/metabolismo , Doença de Lyme/imunologia , Doença de Lyme/metabolismo , Pele/metabolismo
10.
Mol Microbiol ; 90(2): 228-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23710801

RESUMO

Connective tissues are the most common area of colonization for the Lyme disease spirochaete Borrelia burgdorferi. Colonization is aided by the interaction between numerous bacterial adhesins with components of the extracellular matrix (ECM). Here we describe a novel interaction between B. burgdorferi and the major ECM proteoglycan found in joints, aggrecan. Using affinity chromatography and mass spectrometry we identify two borrelial aggrecan-binding proteins: the known ECM ligand Bgp (BB0588) and an uncharacterized protease BbHtrA (BB0104). Proteinase K studies demonstrate that BbHtrA is surface exposed. Immunoblots using sera from patients with both early and late Lyme disease establish that BbHtrA is expressed during human disease, immunogenic, and conserved in the three major Lyme disease spirochaete species. Consequences of the interaction between aggrecan and BbHtrA were examined by proteolysis assays. BbHtrA cleaves aggrecan at a site known to destroy aggrecan function and which has been previously observed in the synovial fluid of patients with Lyme arthritis. These data demonstrate that B. burgdorferi possess aggrecan-binding proteins which may provide the organism with additional capability to colonize connective tissues. Moreover, our studies provide the first evidence that B. burgdorferi possess proteolytic activity which may contribute to the pathogenesis of Lyme arthritis.


Assuntos
Agrecanas/metabolismo , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Endopeptidases/metabolismo , Doença de Lyme/microbiologia , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatografia , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/microbiologia , Endopeptidases/química , Evolução Molecular , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Doença de Lyme/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Líquido Sinovial/metabolismo , Líquido Sinovial/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA