RESUMO
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we develop a series of genetically engineered mouse models of treatment-naive and -experienced NTRK1/2/3 fusion-driven gliomas. All tested NTRK fusions are oncogenic in vivo. The NTRK variant, N-terminal fusion partners, and resistance-associated point mutations all influence tumor histology and aggressiveness. Additional tumor suppressor losses greatly enhance tumor aggressiveness. Treatment with TRK kinase inhibitors significantly extends the survival of NTRK fusion-driven glioma mice, but fails to fully eradicate tumors, leading to recurrence upon treatment discontinuation. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools to study therapy resistance of NTRK fusion tumors.
Assuntos
Modelos Animais de Doenças , Glioma , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases , Receptor trkA , Animais , Glioma/genética , Glioma/patologia , Glioma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Receptor trkA/metabolismo , Receptor trkA/genética , Receptor trkA/antagonistas & inibidores , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor trkC/genética , Receptor trkC/metabolismo , Receptor trkC/antagonistas & inibidores , Receptor trkB/metabolismo , Receptor trkB/genéticaRESUMO
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.
RESUMO
Hypertranscription is common in human cancers and predicts poor prognosis. However detection of hypertranscription is indirect, relying on accurately quantifying mRNA levels and estimating cell numbers. Previously, we introduced FFPE-CUTAC, a genome-wide method for mapping RNA Polymerase II (RNAPII) in formalin-fixed paraffin-embedded (FFPE) sections. Here we use FFPE-CUTAC to demonstrate genome-wide hypertranscription both in transgene-driven mouse gliomas and in assorted human tumors at active regulatory elements and replication-coupled histone genes with reduced mitochondrial DNA abundance. FFPE-CUTAC identified RNAPII-bound regulatory elements shared among diverse cancers and readily categorized human tumors despite using very small samples and low sequencing depths. Remarkably, RNAPII FFPE-CUTAC identified de novo and precisely mapped HER2 amplifications punctuated by likely selective sweeps including genes encoding direct positive regulators of RNAPII itself. Our results demonstrate that FFPE-CUTAC measurements of hypertranscription and classifications of tumors using small sections provides an affordable and sensitive genome-wide strategy for personalized medicine.
RESUMO
For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.
Assuntos
Cromatina , Epigenômica , Animais , Camundongos , Inclusão em Parafina , Estudos Retrospectivos , Cromatina/genética , FormaldeídoRESUMO
The microbial and molecular characterization of the ectorhizosphere is an important step towards developing a more complete understanding of how the cultivation of biofuel crops can be undertaken in nutrient poor environments. The ectorhizosphere of Setaria is of particular interest because the plant component of this plant-microbe system is an important agricultural grain crop and a model for biofuel grasses. Importantly, Setaria lends itself to high throughput molecular studies. As such, we have identified important intra- and interspecific microbial and molecular differences in the ectorhizospheres of three geographically distant Setaria italica accessions and their wild ancestor S. viridis. All were grown in a nutrient-poor soil with and without nutrient addition. To assess the contrasting impact of nutrient deficiency observed for two S. italica accessions, we quantitatively evaluated differences in soil organic matter, microbial community, and metabolite profiles. Together, these measurements suggest that rhizosphere priming differs with Setaria accession, which comes from alterations in microbial community abundances, specifically Actinobacteria and Proteobacteria populations. When globally comparing the metabolomic response of Setaria to nutrient addition, plants produced distinctly different metabolic profiles in the leaves and roots. With nutrient addition, increases of nitrogen containing metabolites were significantly higher in plant leaves and roots along with significant increases in tyrosine derived alkaloids, serotonin, and synephrine. Glycerol was also found to be significantly increased in the leaves as well as the ectorhizosphere. These differences provide insight into how C4 grasses adapt to changing nutrient availability in soils or with contrasting fertilization schemas. Gained knowledge could then be utilized in plant enhancement and bioengineering efforts to produce plants with superior traits when grown in nutrient poor soils.
Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Setaria (Planta)/classificação , Setaria (Planta)/crescimento & desenvolvimento , Solo/química , Alcaloides/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Glicerol , Metabolômica , Nitrogênio/metabolismo , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Análise de Sequência de DNA , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiologia , Microbiologia do SoloRESUMO
BACKGROUND: The safety profile of antimicrobials used during pregnancy is one important consideration in the decision on how to treat and provide postexposure prophylaxis (PEP) for plague during pregnancy. METHODS: We searched 5 scientific literature databases for primary sources on the safety of 9 antimicrobials considered for plague during pregnancy (amikacin, gentamicin, plazomicin, streptomycin, tobramycin, chloramphenicol, doxycycline, sulfadiazine, and trimethoprim-sulfamethoxazole [TMP-SMX]) and abstracted data on maternal, pregnancy, and fetal/neonatal outcomes. RESULTS: Of 13â 052 articles identified, 66 studies (case-control, case series, cohort, and randomized studies) and 96 case reports were included, totaling 27â 751 prenatal exposures to amikacin (nâ =â 9), gentamicin (nâ =â 345), plazomicin (nâ =â 0), streptomycin (nâ =â 285), tobramycin (nâ =â 43), chloramphenicol (nâ =â 246), doxycycline (nâ =â 2351), sulfadiazine (nâ =â 870), and TMP-SMX (nâ =â 23â 602). Hearing or vestibular deficits were reported in 18/121 (15%) children and 17/109 (16%) pregnant women following prenatal streptomycin exposure. First trimester chloramphenicol exposure was associated with an elevated risk of an undescended testis (odds ratio [OR] 5.9, 95% confidence interval [CI] 1.2-28.7). Doxycycline was associated with cardiovascular malformations (OR 2.4, 95% CI 1.2-4.7) in 1 study and spontaneous abortion (OR 2.8, 95% CI 1.9-4.1) in a separate study. First trimester exposure to TMP-SMX was associated with increased risk of neural tube defects (pooled OR 2.5, 95% CI 1.4-4.3), spontaneous abortion (OR 3.5, 95% CI 2.3-5.6), preterm birth (OR 1.5, 95% CI 1.1-2.1), and small for gestational age (OR 1.6, 95% CI 1.2-2.2). No other statistically significant associations were reported. CONCLUSIONS: For most antimicrobials reviewed, adverse maternal/fetal/neonatal outcomes were not observed consistently. Prenatal exposure to streptomycin and TMP-SMX was associated with select birth defects in some studies. Based on limited data, chloramphenicol and doxycycline may be associated with adverse pregnancy or neonatal outcomes; however, more data are needed to confirm these associations. Antimicrobials should be used for treatment and PEP of plague during pregnancy; the choice of antimicrobials may be influenced by these data as well as information about the risks of plague during pregnancy.
Assuntos
Aborto Espontâneo , Anti-Infecciosos , Peste , Nascimento Prematuro , Criança , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Combinação Trimetoprima e Sulfametoxazol/efeitos adversosRESUMO
BACKGROUND: Plague, caused by the bacterium Yersinia pestis, has killed millions in historic pandemics and continues to cause sporadic outbreaks. Numerous antimicrobials are considered effective for treating plague; however, well-defined information on the relative efficacy of various treatments is lacking. We conducted a systematic review of published data on antimicrobial treatment of plague reported in aggregate. METHODS: We searched databases including Embase, Medline, CINAHL, Cochrane Library, and others for publications with terms related to plague and antimicrobials. Articles were included if they contained 1) a group of patients treated for plague, with outcomes reported by antimicrobial regimen, and 2) laboratory evidence of Y. pestis infection or an epidemiologic link to patients with laboratory evidence of Y. pestis. Case fatality rate by antimicrobial regimen was calculated. RESULTS: In total, 5837 articles were identified; among these, 26 articles published between 1939 and 2008 met inclusion criteria. A total of 2631 cases of human plague reported within these articles were included. Among cases classified by primary clinical form of plague, 93.6% were bubonic, 5.9% pneumonic, and 0.5% septicemic with associated case fatalities of 14.2%, 31.1%, and 20.0%, respectively. Case fatality rate among patients who received monotherapy with tetracyclines, chloramphenicol, aminoglycosides, or sulfonamides was 1.3%, 1.4%, 7.5%, and 20.2%, respectively. Fluoroquinolones were only given as part of combination therapy. Penicillin was associated with a case fatality rate of 75%. CONCLUSIONS: Tetracyclines, chloramphenicol, and aminoglycosides were associated with the lowest case fatality rates of all antimicrobials used for treatment of plague. Additional research is needed to determine the efficacy of fluoroquinolones as monotherapy.
Assuntos
Peste , Yersinia pestis , Antibacterianos/uso terapêutico , Fluoroquinolonas , Humanos , Pulmão , Peste/tratamento farmacológico , Peste/epidemiologiaRESUMO
BACKGROUND: Yersinia pestis remains endemic in Africa, Asia, and the Americas and is a known bioterrorism agent. Treatment with aminoglycosides such as streptomycin or gentamicin is effective when initiated early in illness but can have serious side effects. Alternatives such as fluoroquinolones, tetracyclines, and sulfonamides are potentially safer but lack robust human data on efficacy. METHODS: We searched PubMed Central, Medline, Embase, and other databases for articles in any language with terms related to plague and antimicrobials. Articles that contained case-level information on antimicrobial treatment and patient outcome were included. We abstracted information related to patient demographics, clinical features, treatment, and fatality. RESULTS: Among 5837 articles screened, we found 762 published cases of treated plague reported from 1937 to 2019. Fifty-nine percent were male; median age was 22 years (range, 8 days-80 years). The case fatality rate was 20% overall. Most patients had primary bubonic (63%), pneumonic (21%), or septicemic (5%) plague, with associated case fatality rates of 17%, 27%, and 38%, respectively. Among those treated with an aminoglycoside (n = 407 [53%]), the case fatality rate was 13%. Among those treated with a sulfonamide (n = 322 [42%]), tetracycline (n = 171 [22%]), or fluoroquinolone (n = 61 [8%]), fatality was 23%, 10%, and 12%, respectively. Case fatality rate did not substantially differ between patients treated with 1 vs 2 classes of antimicrobials considered to be effective for plague. CONCLUSIONS: In addition to aminoglycosides, other classes of antimicrobials including tetracyclines, fluoroquinolones, and sulfonamides are effective for plague treatment, although publication bias and low numbers in certain treatment groups may limit interpretation.
Assuntos
Peste , Yersinia pestis , África , Antibacterianos/uso terapêutico , Ásia , Criança , Humanos , Masculino , Peste/tratamento farmacológico , Peste/epidemiologiaRESUMO
BACKGROUND: Yersinia pestis continues to cause sporadic cases and outbreaks of plague worldwide and is considered a tier 1 bioterrorism select agent due to its potential for intentional use. Knowledge about the clinical manifestations of plague during pregnancy, specifically the maternal, fetal, and neonatal risks, is very limited. METHODS: We searched 12 literature databases, performed hand searches, and consulted plague experts to identify publications on plague during pregnancy. Articles were included if they reported a case of plague during pregnancy and at least 1 maternal or fetal outcome. RESULTS: Our search identified 6425 articles, of which 59 were eligible for inclusion and described 160 cases of plague among pregnant women. Most published cases occurred during the preantibiotic era. Among those treated with antimicrobials, the most commonly used were sulfonamides (75%) and streptomycin (54%). Among cases treated with antimicrobials, maternal mortality and fetal fatality were 29% and 62%, respectively; for untreated cases, maternal mortality and fetal fatality were 67% and 74%, respectively. Five cases demonstrated evidence of Y. pestis in fetal or neonatal tissues. CONCLUSIONS: Untreated Y. pestis infection during pregnancy is associated with a high risk of maternal mortality and pregnancy loss. Appropriate antimicrobial treatment can improve maternal survival, although even with antimicrobial treatment, there remains a high risk of pregnancy loss. Limited evidence suggests that maternal-fetal transmission of Y. pestis is possible, particularly in the absence of antimicrobial treatment. These results emphasize the need to treat or prophylax pregnant women with suspected plague with highly effective antimicrobials as quickly as possible.
Assuntos
Peste , Yersinia pestis , Antibacterianos/uso terapêutico , Bioterrorismo , Surtos de Doenças , Feminino , Humanos , Peste/diagnóstico , Peste/tratamento farmacológico , Peste/epidemiologia , GravidezRESUMO
We present a computer-aided design tool for ion optical devices using the adjoint variable method. Numerical methods have been essential for the development of ion optical devices such as electron microscopes and mass spectrometers. Yet, the detailed computational analysis and optimization of ion optical devices is still onerous, since the governing equations of charged particle optics cannot be solved in closed form. Here, we show how to employ the adjoint variable method on the finite-element method and Störmer-Verlet method for electrostatic charged particle devices. This method allows for a full sensitivity analysis of ion optical devices, providing a quantitative measure of the effects of design parameters to device performance, at near constant computational cost with respect to the number of parameters. To demonstrate this, we perform such a sensitivity analysis for different freeform N-element Einzel lens systems including designs with over 13,000 parameters. We further show the optimization of the spot size of such lenses using a gradient-based method in combination with the adjoint variable method. The computational efficiency of the method facilitates the optimization of shapes and applied voltages of all surfaces of the device.
RESUMO
Cycloidal mass analyzers are unique sector mass analyzers as they exhibit perfect double focusing, making them ideal for incorporating spatial aperture coding, which can increase the throughput of a mass analyzer without affecting the resolving power. However, the focusing properties of the cycloidal mass analyzer depend on the uniformity of the electric and magnetic fields. In this paper, finite element simulation and charged particle tracing were used to investigate the effect of field uniformity on imaging performance of a cycloidal mass analyzer. For the magnetic field, we evaluate a new permanent magnet geometry by comparing it to a traditional geometry. Results indicate that creating an aperture image in a cycloidal mass spectrometer with the same FWHM as the slit requires less than 1% variation in magnetic field strength along the ion trajectories. The new magnet design, called the opposed dipole magnet, has less than 1% field variation over an area approximately 62 × 65 mm; nearly twice the area available in a traditional design of similar size and weight. This allows ion imaging across larger detector arrays without loss of resolving power. In addition, we compare the aperture imaging quality of a traditionally used cycloidal mass spectrometer electric design with a new optimized design with improved field uniformity. Graphical abstract á .
RESUMO
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract á .
RESUMO
The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.
RESUMO
In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26, 1633-1640, 2015), Russell et al. (J. Am. Soc. Mass Spectrom. 26, 248-256, 2015). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.
RESUMO
Miniaturizing instruments for spectroscopic applications requires the designer to confront a tradeoff between instrument resolution and instrument throughput [and associated signal-to-background-ratio (SBR)]. This work demonstrates a solution to this tradeoff in sector mass spectrometry by the first application of one-dimensional (1D) spatially coded apertures, similar to those previously demonstrated in optics. This was accomplished by replacing the input slit of a simple 90° magnetic sector mass spectrometer with a specifically designed coded aperture, deriving the corresponding forward mathematical model and spectral reconstruction algorithm, and then utilizing the resulting system to measure and reconstruct the mass spectra of argon, acetone, and ethanol. We expect the application of coded apertures to sector instrument designs will lead to miniature mass spectrometers that maintain the high performance of larger instruments, enabling field detection of trace chemicals and point-of-use mass spectrometry.
RESUMO
In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code.