Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 37(8): 1201-1213, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29868986

RESUMO

KEY MESSAGE: Mutagenesis had no effect on number of stalks/plot, stalk height, fibre and sucrose content of mutants. Imazapyr tolerance is likely due to a S622N mutation in the acetolactate synthase gene. The herbicidal compound imazapyr is effective against weeds such as Cynodon and Rottboellia species that constrain sugarcane production. This study aimed to compare agronomic characteristics of three imazapyr tolerant mutants (Mut 1, Mut 6 and Mut 7) with the non-mutated N12 control after 18 months of growth, and to sequence the acetolactate synthase (ALS) gene to identify any point mutations conferring imazapyr tolerance. There were no significant differences in the number of stalks/plot, stalk height, fibre and sucrose contents of the mutants compared with the N12 control. However, Mut 1 genotype was more susceptible to the Lepidopteran stalk borer, Eldana saccharina when compared with the non-mutated N12 (11.14 ± 1.37 and 3.89 ± 0.52% internodes bored, respectively), making Mut 1 less desirable for commercial cultivation. Molecular characterisation of the ALS gene revealed non-synonymous mutations in Mut 6. An A to G change at nucleotide position 1857 resulted in a N513D mutation, while a G to A change at nucleotide position 2184 imposed a S622N mutation. Molecular dynamics simulations revealed that the S622N mutation renders an asparagine side chain clash with imazapyr, hence this mutation is effective in conferring imazapyr tolerance.


Assuntos
Acetolactato Sintase/metabolismo , Imidazóis/farmacologia , Niacina/análogos & derivados , Saccharum/efeitos dos fármacos , Saccharum/genética , Acetolactato Sintase/genética , Genótipo , Simulação de Dinâmica Molecular , Mutação/genética , Niacina/farmacologia
2.
AoB Plants ; 72014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452311

RESUMO

Silicon (Si) is important in mitigating abiotic and biotic plant stresses, yet many agricultural soils, such as those of the rainfed production areas of the South African sugar industry, are deficient in plant-available Si, making Si supplementation necessary. However, Si uptake by sugarcane (Saccharum spp. hybrids) is limited even where silicate amendments improve soil Si status. Rhizosphere pH, which can affect Si uptake, can be manipulated using different N-form fertilizers. We tested whether (i) fertilization with [Formula: see text] (rhizosphere acidification) increased Si uptake compared with [Formula: see text] (rhizosphere alkalinization); and (ii) uptake differed between an N-efficient, more acid-tolerant cultivar (N12) and an N-inefficient, less acid-tolerant cultivar (N14). Two pot trials with low-Si soil were fertilized with calcium silicate (Ca2SiO4) slag, plus N from ammonium sulphate [(NH4)2SO4], ammonium thiosulphate [(NH4)2S2O3] and calcium nitrate [Ca(NO3)2] (Trial 1) or N from (NH4)2S2O3 and Ca(NO3)2 only (Trial 2). Trial 2 included cultivars N12 and N14. Nitrate treatments significantly increased soil pH and soil Si compared with [Formula: see text] However, [Formula: see text] treatments significantly increased leaf and stalk Si content compared with [Formula: see text] reflected in a significant negative relationship between soil pH and leaf Si. Acid-extracted soil Si was negatively related to leaf and stalk Si, likely due to adsorption of silicic acid to soil surfaces under higher pH of the [Formula: see text] treatment and its reduced availability for plant uptake. We conclude that [Formula: see text] increased Si uptake into leaf and stalk, and propose that reduced rhizosphere pH solubilized Si from Ca2SiO4 and increased silicic acid availability for plant uptake. By contrast, [Formula: see text] may have reduced Si uptake due to adsorption of Si to soil surfaces at higher pH. Our results indicate that ammoniacal fertilizers, such as (NH4)2SO4 and urea, have potential for promoting dissolution of applied Ca2SiO4 and subsequent uptake of Si by sugarcane.

3.
Plant Cell Rep ; 32(2): 249-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23090725

RESUMO

KEY MESSAGE : A combination of in vitro culture and mutagenesis using ethyl methanesulfonate (EMS) followed by culture filtrate-mediated selection produced variant sugarcane plants tolerant and resistant to Fusarium sacchari. Eldana saccharina is a destructive pest of the sugarcane crop in South Africa. Fusarium sacchari PNG40 (a fungal strain harmful to E. saccharina) has the potential to be an endophytic biological control agent of the stalk borer. However, the fungus causes Fusarium stalk rot in sugarcane. In the current study, sugarcane plants tolerant and resistant to F. sacchari PNG40 were produced by exposing embryogenic calli to the chemical mutagen ethyl methanesulfonate (EMS), followed by in vitro selection during somatic embryogenesis and plantlet regeneration on media containing F. sacchari culture filtrates (CF). The incorporation of 100 ppm CF in the culture media at the embryo maturation stage, at germination, or at both, resulted in callus necrosis and consequent reduced plantlet yield. Subsequent trimming of the roots of regenerated plants and their exposure to 1,500 ppm CF served as a further selection treatment. Plants produced from EMS-treated calli displayed improved root re-growth in the presence of CF pressure compared with those from non-treated calli. The tolerance of CF-selected plants was confirmed in greenhouse tests by inoculation with F. sacchari PNG40, re-isolation of Fusarium spp. from undamaged tissue of asymptomatic plants and establishment of the identity of fungal isolates as PNG40 using molecular analysis. The restriction of PNG40 presence to the inoculation lesion in some plants suggested their resistance to the fungus. Genotypes exhibiting symptomless endophytic colonization by PNG40 were identified and will be utilised for testing biological control strategies against E. saccharina.


Assuntos
Fusarium/fisiologia , Doenças das Plantas/imunologia , Técnicas de Embriogênese Somática de Plantas , Saccharum/fisiologia , Animais , Endófitos , Metanossulfonato de Etila , Genótipo , Mariposas/fisiologia , Mutagênese , Mutagênicos , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Regeneração , Saccharum/genética , Saccharum/imunologia , Saccharum/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA