Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 17051-17060, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37881814

RESUMO

Airport ice control products contributed to total phosphorus (TP) loadings in a study of surface water runoff at a medium-sized airport from 2015 to 2021. Eleven airport ice control products had TP concentrations from 1-807 mg L-1 in liquid formulas, while solid pavement deicer had a TP concentration of 805 mg kg-1. Product application data, formula TP concentrations, and surface water sampling results were used to estimate TP concentration and loading contributions from these ice control products to receiving streams. Airport ice control products were found to contribute to TP in 84% of the water samples collected at downstream sites during deicing events, and TP concentrations at those sites exceeded aquatic life benchmarks in 70% of samples collected during deicing. A receiving stream 6 km downstream had TP attributed to airport ice control sources in 78% of the samples. TP loadings at an upstream site and the receiving stream site were greatest during the largest runoff events as is typical in urban runoff, but this pattern was not always followed at airport outfall sites due to the influence of TP in deicer products. Products analyzed in this study are used at airports across the United States and abroad, and findings suggest that airport deicers could represent a previously unrecognized source of phosphorus to adjacent waterways.


Assuntos
Gelo , Poluentes Químicos da Água , Aeroportos , Fósforo , Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
PLoS One ; 18(6): e0286851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289789

RESUMO

Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.


Assuntos
Rios , Esgotos , Humanos , Rios/microbiologia , Esgotos/microbiologia , Wisconsin , Monitoramento Ambiental , Bactérias , Fezes/microbiologia , Microbiologia da Água
3.
Integr Environ Assess Manag ; 18(1): 245-257, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34028174

RESUMO

A comparison of the presence of additives in airport deicers commonly used in the United States and in airport runoff was conducted with data collected before and after changes in deicer formulations. Three isomers of benzotriazoles (BTs)-4-methyl-1H-benzotriazole (4-MeBT), 5-methyl-1H-benzotriazole (5-MeBT), and 1H-benzotriazole (1H-BT)-are corrosion inhibitors added to some formulations of airport deicers and are reported to be a source of aquatic toxicity in streams receiving airport runoff. Concentrations of BT in aircraft deicers and anti-icing fluids (ADAF) were reduced over time but were not reduced in potassium acetate airfield-pavement deicer material (PDM) that was used throughout the study period. Streams receiving runoff from Milwaukee Mitchell International Airport, Milwaukee, Wisconsin, USA, were monitored from 2004 to 2019 for BTs, with concentrations of 4-MeBT varying from <0.35 to 4600 µg/L, 5-MeBT varying from <0.25 to 6600 µg/L, and 1H-BT varying from <0.25 to 150 µg/L. Median 4-MeBT concentrations at sites downstream from the airport decreased by approximately 74%, 5-MeBT by 69%, and 1H-BT by 82% following reduction in BTs in ADAF formulations, resulting in a reduction in the potential for aquatic toxicity in receiving streams. A change in residuals from regression analysis between freezing point depressants and BTs indicate that the reduction in BT concentrations in airport runoff was a result of BT reduction in ADAF formulations, but PDM may still be a substantial source of BTs in airport runoff. Because BTs are a source of aquatic toxicity in airport deicers, the reductions in BTs in the common deicers observed in this study can be used to demonstrate the potential for a reduction in the effects to aquatic organisms in airport runoff, resulting in greater likelihood of meeting aquatic toxicity requirements in airport stormwater permits, and potentially driving airports, airlines, and permit holders to advocate further reduction or elimination of BTs and other harmful contaminants in airport deicers. Integr Environ Assess Manag 2022;18:245-257. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Aeroportos , Poluentes Químicos da Água , Organismos Aquáticos , Ecotoxicologia , Triazóis , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 43(1): 40-6, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19209582

RESUMO

Concentrations of airfield-pavement deicer materials (PDM) in a study of airport runoff often exceeded levels of concern regarding aquatic toxicity. Toxicity tests on Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Pseudokirchneriella subcapitata (commonly known as Selenastrum capricornutum) were performed with potassium acetate (K-Ac) PDM, sodium formate (Na-For) PDM, and with freezing-point depressants (K-Ac and Na-For). Results indicate that toxicity in PDM is driven by the freezing-point depressants in all tests except the Vibrio fisheri test for Na-For PDM which is influenced by an additive. Acute toxicity end points for different organisms ranged from 298 to 6560 mg/L (as acetate) for K-Ac PDM and from 1780 to 4130 mg/L (as formate) for Na-For PDM. Chronic toxicity end points ranged from 19.9 to 336 mg/L (as acetate) for K-Ac PDM and from 584 to 1670 mg/L (as formate) for Na-For PDM. Sample results from outfalls at General Mitchell International Airport in Milwaukee, WI (GMIA) indicated that 40% of samples had concentrations greater thanthe aquatic-life benchmarkfor K-Ac PDM. K-Ac has replaced urea during the 1990s as the most widely used PDM at GMIA and in the United States. Results of ammonia samples from airport outfalls during periods when urea-based PDM was used at GMIA indicated that 41% of samples had concentrations exceeding the U.S. Environmental Protection Agency (USEPA) 1-h water-quality criterion. The USEPA 1-h water-quality criterion for chloride was exceeded in 68% of samples collected in the receiving stream, a result of road-salt runoff from urban influence near the airport. Results demonstrate that PDM must be considered to comprehensively evaluate the impact of chemical deicers on aquatic toxicity in water containing airport runoff.


Assuntos
Aviação , Materiais de Construção , Água do Mar , Testes de Toxicidade , Animais , Peixes , Congelamento , Geografia , Acetato de Potássio/análise , Água/normas , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA