Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 615(7953): 678-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922586

RESUMO

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
PLoS Pathog ; 18(5): e1010500, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500035

RESUMO

Neutralizing antibodies are important correlates of protection against dengue. Yet, determinants of variation in neutralization across strains within the four dengue virus serotypes (DENV1-4) is imperfectly understood. Studies focus on structural DENV proteins, especially the envelope (E), the primary target of anti-DENV antibodies. Although changes in immune recognition (antigenicity) are often attributed to variation in epitope residues, viral processes influencing conformation and epitope accessibility also affect neutralizability, suggesting possible modulating roles of nonstructural proteins. We estimated effects of residue changes in all 10 DENV proteins on antigenic distances between 348 DENV collected from individuals living in Bangkok, Thailand (1994-2014). Antigenic distances were derived from response of each virus to a panel of twenty non-human primate antisera. Across 100 estimations, excluding 10% of virus pairs each time, 77 of 295 positions with residue variability in E consistently conferred antigenic effects; 52 were within ±3 sites of known binding sites of neutralizing human monoclonal antibodies, exceeding expectations from random assignments of effects to sites (p = 0.037). Effects were also identified for 16 sites on the stem/anchor of E which were only recently shown to become exposed under physiological conditions. For all proteins, except nonstructural protein 2A (NS2A), root-mean-squared-error (RMSE) in predicting distances between pairs held out in each estimation did not outperform sequences of equal length derived from all proteins or E, suggesting that antigenic signals present were likely through linkage with E. Adjusted for E, we identified 62/219 sites embedding the excess signals in NS2A. Concatenating these sites to E additionally explained 3.4% to 4.0% of observed variance in antigenic distances compared to E alone (50.5% to 50.8%); RMSE outperformed concatenating E with sites from any protein of the virus (ΔRMSE, 95%IQR: 0.01, 0.05). Our results support examining antigenic determinants beyond the DENV surface.


Assuntos
Vírus da Dengue , Dengue , Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos/genética , Tailândia , Proteínas do Envelope Viral
3.
NPJ Vaccines ; 6(1): 77, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021159

RESUMO

Antibody-dependent enhancement (ADE) is suspected to influence dengue virus (DENV) infection, but the role ADE plays in vaccination strategies incorporating live attenuated virus components is less clear. Using a heterologous prime-boost strategy in rhesus macaques, we examine the effect of priming with DENV purified inactivated vaccines (PIVs) on a tetravalent live attenuated vaccine (LAV). Sera exhibited low-level neutralizing antibodies (NAb) post PIV priming, yet moderate to high in vitro ADE activity. Following LAV administration, the PIV primed groups exhibited DENV-2 LAV peak viremias up to 1,176-fold higher than the mock primed group, and peak viremia correlated with in vitro ADE. Furthermore, PIV primed groups had more balanced and higher DENV-1-4 NAb seroconversion and titers than the mock primed group following LAV administration. These results have implications for the development of effective DENV vaccine prime-boost strategies and for our understanding of the role played by ADE in modulating DENV replication.

4.
PLoS One ; 16(2): e0247068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630885

RESUMO

Scientific collections such as the U.S. National Museum (USNM) are critical to filling knowledge gaps in molecular systematics studies. The global taxonomic impediment has resulted in a reduction of expert taxonomists generating new collections of rare or understudied taxa and these large historic collections may be the only reliable source of material for some taxa. Integrated systematics studies using both morphological examinations and DNA sequencing are often required for resolving many taxonomic issues but as DNA methods often require partial or complete destruction of a sample, there are many factors to consider before implementing destructive sampling of specimens within scientific collections. We present a methodology for the use of archive specimens that includes two crucial phases: 1) thoroughly documenting specimens destined for destructive sampling-a process called electronic vouchering, and 2) the pipeline used for whole genome sequencing of archived specimens, from extraction of genomic DNA to assembly of putative genomes with basic annotation. The process is presented for eleven specimens from two different insect subfamilies of medical importance to humans: Anophelinae (Diptera: Culicidae)-mosquitoes and Triatominae (Hemiptera: Reduviidae)-kissing bugs. Assembly of whole mitochondrial genome sequences of all 11 specimens along with the results of an ortholog search and BLAST against the NCBI nucleotide database are also presented.


Assuntos
Culicidae/genética , DNA/genética , Animais , Genômica/métodos , Humanos , Filogenia , Análise de Sequência de DNA/métodos , Triatoma/genética , Triatominae/genética
5.
PLoS Pathog ; 17(1): e1009240, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513191

RESUMO

Dengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection. While both experimental and natural primary DENV-1 infection resulted in overlapping patterns of inflammatory gene upregulation, natural primary DENV-1 infection was accompanied with a more pronounced suppression in gene products associated with protein translation and mitochondrial function, principally in monocytes. This suggests that the immune response elicited by experimental and natural primary DENV infection are similar, but that natural primary DENV-1 infection has a more pronounced impact on basic cellular processes to induce a multi-layered anti-viral state.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Regulação da Expressão Gênica , Animais , Linhagem Celular , Dengue/virologia , Humanos , Imunidade/genética , Inflamação/genética , Inflamação/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Análise de Sequência de RNA , Análise de Célula Única
6.
J Infect Dis ; 223(2): 258-267, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32572470

RESUMO

BACKGROUND: Dengue human infection models (DHIM) have been used as a safe means to test the viability of prophylaxis and therapeutics. METHODS: A phase 1 study of 12 healthy adult volunteers using a challenge virus, DENV-1-LVHC strain 45AZ5, was performed. A dose escalating design was used to determine the safety and performance profile of the challenge virus. Subjects were evaluated extensively until 28 days and then out to 6 months. RESULTS: Twelve subjects received the challenge virus: 6 with 0.5 mL of 6.5 × 103 plaque-forming units (PFU)/mL (low-dose group) and 6 with 0.5 mL of 6.5 × 104 PFU/mL (mid-dose group). All except 1 in the low-dose group developed detectable viremia. For all subjects the mean incubation period was 5.9 days (range 5-9 days) and mean time of viremia was 6.8 days (range 3-9 days). Mean peak for all subjects was 1.6 × 107 genome equivalents (GE)/mL (range 4.6 × 103 to 5 × 107 GE/mL). There were no serious adverse events or long-term safety signals noted. CONCLUSIONS: We conclude that DENV-1-LVHC was well-tolerated, resulted in an uncomplicated dengue illness, and may be a suitable DHIM for therapeutic and prophylactic product testing. CLINICAL TRIALS REGISTRATION: NCT02372175.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/efeitos adversos , Voluntários Saudáveis , Humanos , Avaliação de Resultados em Cuidados de Saúde , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/efeitos adversos , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia
7.
Infect Genet Evol ; 90: 104617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33161179

RESUMO

Kenya experiences a substantial burden of dengue, yet there are very few DENV-2 sequence data available from this country and indeed the entire continent of Africa. We therefore undertook whole genome sequencing and evolutionary analysis of fourteen dengue virus (DENV)-2 strains sampled from Malindi sub-County Hospital during the 2017 DENV-2 outbreak in the Kenyan coast. We further performed an extended East African phylogenetic analysis, which leveraged 26 complete African env genes. Maximum likelihood analysis showed that the 2017 outbreak was due to the Cosmopolitan genotype, indicating that this has been the only confirmed human DENV-2 genotype circulating in Africa to date. Phylogeographic analyses indicated transmission of DENV-2 viruses between East Africa and South/South-West Asia. Time-scaled genealogies show that DENV-2 viruses shows spatial structure at the country level in Kenya, with a time-to-most-common-recent ancestor analysis indicating that these DENV-2 strains were circulating for up to 5.38 years in Kenya before detection in the 2017 Malindi outbreak. Selection pressure analyses indicated sampled Kenyan DENV strains uniquely being under positive selection at 6 sites, predominantly across the non-structural genes, and epitope prediction analyses showed that one of these sites corresponds to a putative predicted MHC-I CD8+ DENV-2 Cosmopolitan virus epitope only evident in a sampled Kenyan virus. Taken together, our findings indicate that the 2017 Malindi DENV-2 outbreak arose from a strain which had circulated for several years in Kenya before recent detection, has experienced diversifying selection pressure, and may contain new putative immunogens relevant to vaccine design. These findings prompt further genomic epidemiology studies in this and other Kenyan locations to further elucidate the transmission dynamics of DENV in this region.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Evolução Molecular , África Oriental/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Humanos , Quênia/epidemiologia , Filogenia , Prevalência , Estudos Soroepidemiológicos
8.
Front Genet ; 11: 577563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101395

RESUMO

Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory's self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.

9.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32675185

RESUMO

We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.

10.
EBioMedicine ; 54: 102733, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32315970

RESUMO

Antibody-mediated humoral immunity is thought to play a central role in mediating the immunopathogenesis of acute DENV infection, but limited data are available on the diversity, specificity, and functionality of the antibody response at the molecular level elicited by primary or secondary DENV infection. In order to close this functional gap in our understanding of DENV-specific humoral immunity, we utilized high-throughput single cell RNA sequencing to investigate B cells circulating in both primary and secondary natural DENV infections. We captured full-length paired immunoglobulin receptor sequence data from 9,027 B cells from a total of 6 subjects, including 2,717 plasmablasts. In addition to IgG and IgM class-switched cells, we unexpectedly found a high proportion of the DENV-elicited plasmablasts expressing IgA, principally in individuals with primary DENV infections. These IgA class-switched cells were extensively hypermutated even in individuals with a serologically confirmed primary DENV infection. Utilizing a combination of conventional biochemical assays and high-throughput shotgun mutagenesis, we determined that DENV-reactive IgA class-switched antibodies represent a significant fraction of DENV-reactive Igs generated in response to DENV infection, and that they exhibit a comparable epitope specificity to DENV-reactive IgG antibodies. These results provide insight into the molecular-level diversity of DENV-elicited humoral immunity and identify a heretofore unappreciated IgA plasmablast response to DENV infection.


Assuntos
Linfócitos B/imunologia , Dengue/imunologia , Imunoglobulinas/genética , Linfócitos B/citologia , Células Cultivadas , Dengue/genética , Humanos , Imunidade Humoral , Imunoglobulinas/metabolismo , RNA-Seq , Análise de Célula Única , Transcriptoma
11.
PLoS Negl Trop Dis ; 14(4): e0008191, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32267846

RESUMO

Dengue virus (DENV) is transmitted by infectious mosquitoes during blood-feeding via saliva containing biologically-active proteins. Here, we examined the effect of varying DENV infection modality in rhesus macaques in order to improve the DENV nonhuman primate (NHP) challenge model. NHPs were exposed to DENV-1 via subcutaneous or intradermal inoculation of virus only, intradermal inoculation of virus and salivary gland extract, or infectious mosquito feeding. The infectious mosquito feeding group exhibited delayed onset of viremia, greater viral loads, and altered clinical and immune responses compared to other groups. After 15 months, NHPs in the subcutaneous and infectious mosquito feeding groups were re-exposed to either DENV-1 or DENV-2. Viral replication and neutralizing antibody following homologous challenge were suggestive of sterilizing immunity, whereas heterologous challenge resulted in productive, yet reduced, DENV-2 replication and boosted neutralizing antibody. These results show that a more transmission-relevant exposure modality resulted in viral replication closer to that observed in humans.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dengue/imunologia , Animais , Dengue/virologia , Vírus da Dengue/fisiologia , Modelos Animais de Doenças , Feminino , Cinética , Macaca mulatta/imunologia , Mosquitos Vetores/virologia , RNA Viral/sangue , Glândulas Salivares/virologia , Vacinação , Carga Viral , Viremia/prevenção & controle , Replicação Viral
12.
BMC Evol Biol ; 20(1): 31, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075576

RESUMO

BACKGROUND: In recent years, Ecuador and other South American countries have experienced an increase in arboviral diseases. A rise in dengue infections was followed by introductions of chikungunya and Zika, two viruses never before seen in many of these areas. Furthermore, the latest socioeconomic and political instability in Venezuela and the mass migration of its population into the neighboring countries has given rise to concerns of infectious disease spillover and escalation of arboviral spread in the region. RESULTS: We performed phylogeographic analyses of dengue (DENV) and chikungunya (CHIKV) virus genomes sampled from a surveillance site in Ecuador in 2014-2015, along with genomes from the surrounding countries. Our results revealed at least two introductions of DENV, in 2011 and late 2013, that initially originated from Venezuela and/or Colombia. The introductions were subsequent to increases in the influx of Venezuelan and Colombian citizens into Ecuador, which in 2013 were 343% and 214% higher than in 2009, respectively. However, we show that Venezuela has historically been an important source of DENV dispersal in this region, even before the massive exodus of its population, suggesting already established paths of viral distribution. Like DENV, CHIKV was introduced into Ecuador at multiple time points in 2013-2014, but unlike DENV, these introductions were associated with the Caribbean. Our findings indicated no direct CHIKV connection between Ecuador, Colombia, and Venezuela as of 2015, suggesting that CHIKV was, at this point, not following the paths of DENV spread. CONCLUSION: Our results reveal that Ecuador is vulnerable to arbovirus import from many geographic locations, emphasizing the need of continued surveillance and more diversified prevention strategies. Importantly, increase in human movement along established paths of viral dissemination, combined with regional outbreaks and epidemics, may facilitate viral spread and lead to novel virus introductions. Thus, strengthening infectious disease surveillance and control along migration routes and improving access to healthcare for the vulnerable populations is of utmost importance.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Vírus da Dengue/classificação , Vírus da Dengue/genética , Dengue/epidemiologia , Emigração e Imigração/estatística & dados numéricos , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Colômbia/epidemiologia , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Surtos de Doenças , Equador/epidemiologia , Emigração e Imigração/tendências , Genoma Viral , Genótipo , Humanos , Mutação de Sentido Incorreto/fisiologia , Fenótipo , Filogeografia , Análise de Sequência de DNA , América do Sul/epidemiologia , Venezuela/epidemiologia , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
13.
Nat Med ; 26(2): 228-235, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015557

RESUMO

Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs. 1-3). Despite advances in vaccine development, it remains unclear how ZIKV vaccination affects immune responses in humans with prior flavivirus immunity. Here we show that a single-dose immunization of ZIKV purified inactivated vaccine (ZPIV)4-7 in a dengue virus (DENV)-experienced human elicited potent cross-neutralizing antibodies to both ZIKV and DENV. Using a unique ZIKV virion-based sorting strategy, we isolated and characterized multiple antibodies, including one termed MZ4, which targets a novel site of vulnerability centered on the Envelope (E) domain I/III linker region and protects mice from viremia and viral dissemination following ZIKV or DENV-2 challenge. These data demonstrate that Zika vaccination in a DENV-experienced individual can boost pre-existing flavivirus immunity and elicit protective responses against both ZIKV and DENV. ZPIV vaccination in Puerto Rican individuals with prior flavivirus experience yielded similar cross-neutralizing potency after a single vaccination, highlighting the potential benefit of ZIKV vaccination in flavivirus-endemic areas.


Assuntos
Dengue/imunologia , Doadores de Tecidos , Vacinas Virais/uso terapêutico , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Reações Cruzadas , Vírus da Dengue , Mapeamento de Epitopos , Feminino , Flavivirus/metabolismo , Humanos , Imunoglobulina G/química , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos , Vacinação , Vacinas de Produtos Inativados/uso terapêutico , Células Vero , Viremia , Zika virus
14.
J Infect Dis ; 221(Suppl 3): S292-S307, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31612214

RESUMO

Next generation sequencing (NGS) combined with bioinformatics has successfully been used in a vast array of analyses for infectious disease research of public health relevance. For instance, NGS and bioinformatics approaches have been used to identify outbreak origins, track transmissions, investigate epidemic dynamics, determine etiological agents of a disease, and discover novel human pathogens. However, implementation of high-quality NGS and bioinformatics in research and public health laboratories can be challenging. These challenges mainly include the choice of the sequencing platform and the sequencing approach, the choice of bioinformatics methodologies, access to the appropriate computation and information technology infrastructure, and recruiting and retaining personnel with the specialized skills and experience in this field. In this review, we summarize the most common NGS and bioinformatics workflows in the context of infectious disease genomic surveillance and pathogen discovery, and highlight the main challenges and considerations for setting up an NGS and bioinformatics-focused infectious disease research public health laboratory. We describe the most commonly used sequencing platforms and review their strengths and weaknesses. We review sequencing approaches that have been used for various pathogens and study questions, as well as the most common difficulties associated with these approaches that should be considered when implementing in a public health or research setting. In addition, we provide a review of some common bioinformatics tools and procedures used for pathogen discovery and genome assembly, along with the most common challenges and solutions. Finally, we summarize the bioinformatics of advanced viral, bacterial, and parasite pathogen characterization, including types of study questions that can be answered when utilizing NGS and bioinformatics.


Assuntos
Doenças Transmissíveis/microbiologia , Biologia Computacional , Surtos de Doenças , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Saúde Pública , Doenças Transmissíveis/epidemiologia , Humanos , Laboratórios , Metagenômica , Pesquisa
15.
Nat Commun ; 10(1): 3666, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413301

RESUMO

Generating effective and durable T cell immunity is a critical prerequisite for vaccination against dengue virus (DENV) and other viral diseases. However, understanding the molecular mechanisms of vaccine-elicited T cell immunity remains a critical knowledge gap in vaccinology. In this study, we utilize single-cell RNA sequencing (scRNAseq) and longitudinal TCR clonotype analysis to identify a unique transcriptional signature present in acutely activated and clonally-expanded T cells that become committed to the memory repertoire. This effector/memory-associated transcriptional signature is dominated by a robust metabolic transcriptional program. Based on this transcriptional signature, we are able to define a set of markers that identify the most durable vaccine-reactive memory-precursor CD8+ T cells. This study illustrates the power of scRNAseq as an analytical tool to assess the molecular mechanisms of host control and vaccine modality in determining the magnitude, diversity and persistence of vaccine-elicited cell-mediated immunity.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas contra Dengue/farmacologia , Imunidade Celular/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunidade Celular/genética , Imunidade Celular/imunologia , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Memória Imunológica/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de RNA , Análise de Célula Única , Vacinas Atenuadas
16.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996092

RESUMO

Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.


Assuntos
Furões/virologia , Vírus da Influenza A Subtipo H10N7/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aerossóis , Animais , Animais Selvagens/virologia , Aves/virologia , Linhagem Celular , Charadriiformes/virologia , Genoma Viral , Humanos , Islândia , Vírus da Influenza A Subtipo H10N7/classificação , Vírus da Influenza A Subtipo H10N7/genética , Vírus da Influenza A Subtipo H10N7/isolamento & purificação , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/patologia , Pandemias , Filogenia , Polissacarídeos , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Alinhamento de Sequência
17.
J Int AIDS Soc ; 21(11): e25204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30601598

RESUMO

INTRODUCTION: Thailand plays a substantial role in global HIV-1 transmission of CRF01_AE. Worldwide, men who have sex with men (MSM) are at elevated risk for HIV-1 infection. Hence, understanding HIV-1 diversity in a primarily Thai MSM cohort with acute infection, and its connections to the broader HIV-1 transmission network in Asia is crucial for research and development of HIV-1 vaccines, treatment and cure. METHODS: Subtypes and diversity of infecting viruses from individuals sampled from 2009 to 2015 within the RV254/SEARCH 010 cohort were assessed by multiregion hybridization assay (MHAbce), multiregion subtype-specific PCR assay (MSSPbce) and full-length single-genome sequencing (SGS). Phylogenetic analysis was performed by maximum likelihood. Pairwise genetic distances of envelope gp160 sequences obtained from the cohort and from Asia (Los Alamos National Laboratory HIV Database) were calculated to identify potential transmission networks. RESULTS: MHAbce/MSSPbce results identified 81.6% CRF01_AE infecting strains in RV254. CRF01_AE/B recombinants and subtype B were found at 7.3% and 2.8% respectively. Western subtype B strains outnumbered Thai B' strains. Phylogenetic analysis revealed one C, one CRF01_AE/CRF02_AG recombinant and one CRF01_AE/B/C recombinant. Asian network analysis identified one hundred and twenty-three clusters, including five clusters of RV254 participants. None of the RV254 sequences clustered with non-RV254 sequences. The largest international cluster involved 15 CRF01_AE strains from China and Vietnam. The remaining clusters were mostly intracountry connections, of which 31.7% included Thai nodes and 43.1% included Chinese nodes. CONCLUSION: While the majority of strains in Thailand are CRF01_AE and subtype B, emergence of unique recombinant forms (URFs) are found in a moderate fraction of new HIV-1 infections. Approaches to vaccine design and immunotherapeutics will need to monitor and consider the expanding proportion of recombinants and the increasing genetic diversity in the region. Identified HIV-1 transmission networks indicate ongoing spread of HIV-1 among MSM. As HIV-1 epidemics continue to expand in other Asian countries, transmission network analyses can inform strategies for prevention, intervention, treatment and cure.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/genética , Homossexualidade Masculina , Epidemiologia Molecular , Estudos de Coortes , Variação Genética , Soropositividade para HIV/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Filogenia , Estudos Prospectivos , Tailândia/epidemiologia
18.
J Clin Virol ; 94: 91-99, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28779659

RESUMO

BACKGROUND: Emerging and re-emerging respiratory pathogens represent an increasing threat to public health. Etiological determination during outbreaks generally relies on clinical information, occasionally accompanied by traditional laboratory molecular or serological testing. Often, this limited testing leads to inconclusive findings. The Armed Forces Research Institute of Medical Sciences (AFRIMS) collected 12,865 nasopharyngeal specimens from acute influenza-like illness (ILI) patients in five countries in South/South East Asia during 2010-2013. Three hundred and twenty-four samples which were found to be negative for influenza virus after screening with real-time RT-PCR and cell-based culture techniques demonstrated the potential for viral infection with evident cytopathic effect (CPE) in several cell lines. OBJECTIVE: To assess whether whole genome next-generation sequencing (WG-NGS) together with conventional molecular assays can be used to reveal the etiology of influenza negative, but CPE positive specimens. STUDY DESIGN: The supernatant of these CPE positive cell cultures were grouped in 32 pools containing 2-26 supernatants per pool. Three WG-NGS runs were performed on these supernatant pools. Sequence reads were used to identify positive pools containing viral pathogens. Individual samples in the positive pools were confirmed by qRT-PCR, RT-PCR, PCR and Sanger sequencing from the CPE culture and original clinical specimens. RESULTS: WG-NGS was an effective way to expand pathogen identification in surveillance studies. This enabled the identification of a viral agent in 71.3% (231/324) of unidentified surveillance samples, including common respiratory pathogens (100/324; 30.9%): enterovirus (16/100; 16.0%), coxsackievirus (31/100; 31.0%), echovirus (22/100; 22.0%), human rhinovirus (3/100; 3%), enterovirus genus (2/100; 2.0%), influenza A (9/100; 9.0%), influenza B, (5/100; 5.0%), human parainfluenza (4/100; 4.0%), human adenovirus (3/100; 3.0%), human coronavirus (1/100; 1.0%), human metapneumovirus (2/100; 2.0%), and mumps virus (2/100; 2.0%), in addition to the non-respiratory pathogen herpes simplex virus type 1 (HSV-1) (172/324; 53.1%) and HSV-1 co-infection with respiratory viruses (41/324; 12.7%).


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções Respiratórias/virologia , Ásia , DNA Viral/análise , DNA Viral/genética , Infecções por Enterovirus/diagnóstico , Humanos , RNA Viral/análise , RNA Viral/genética , Infecções Respiratórias/diagnóstico , Estudos Retrospectivos
19.
Am J Trop Med Hyg ; 93(2): 380-383, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26101272

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne pathogen with reported cases in Africa, Asia, and large outbreaks in the Pacific. No autochthonous ZIKV infections have been confirmed in Thailand. However, there have been several cases reported in travelers returning from Thailand. Here we report seven cases of acute ZIKV infection in Thai residents across the country confirmed by molecular or serological testing including sequence data. These endemic cases, combined with previous reports in travelers, provide evidence that ZIKV is widespread throughout Thailand.


Assuntos
Surtos de Doenças , Infecção por Zika virus , Zika virus/isolamento & purificação , Adolescente , Adulto , Animais , Criança , Culicidae/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral , Tailândia/epidemiologia , Adulto Jovem , Zika virus/classificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
20.
PLoS One ; 10(4): e0122812, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25876137

RESUMO

Influenza virus (IFV) can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs) in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1) universal SNPs, (2) likely common SNPs, and (3) unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.


Assuntos
Biologia Computacional/métodos , Influenza Humana/virologia , Orthomyxoviridae/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Alelos , Biblioteca Gênica , Deriva Genética , Genômica , Humanos , Linguagens de Programação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA