Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220068, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150201

RESUMO

Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP. This approach highlights the potential for integrating autonomous and remote sensing observations of fine scale dynamics to derive regionally optimized biogeochemical parameterizations for Southern Ocean models. Ongoing development in both the observational and modelling fields will generate new insights into Southern Ocean ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to climate change. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Science ; 379(6634): 834-840, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821685

RESUMO

Southern Ocean primary productivity is principally controlled by adjustments in light and iron limitation, but the spatial and temporal determinants of iron availability, accessibility, and demand are poorly constrained, which hinders accurate long-term projections. We present a multidecadal record of phytoplankton photophysiology between 1996 and 2022 from historical in situ datasets collected by Biogeochemical Argo (BGC-Argo) floats and ship-based platforms. We find a significant multidecadal trend in irradiance-normalized nonphotochemical quenching due to increasing iron stress, with concomitant declines in regional net primary production. The observed trend of increasing iron stress results from changing Southern Ocean mixed-layer physics as well as complex biological and chemical feedback that is indicative of important ongoing changes to the Southern Ocean carbon cycle.


Assuntos
Ferro , Fitoplâncton , Estresse Fisiológico , Oceanos e Mares , Fitoplâncton/fisiologia , Água do Mar/química
3.
Opt Express ; 29(14): 21084-21112, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265904

RESUMO

Studying the biogeochemistry of the Southern Ocean using remote sensing relies on accurate interpretation of ocean colour through bio-optical and biogeochemical relationships between quantities and properties of interest. During the Antarctic Circumnavigation Expedition of the 2016/2017 Austral Summer, we collected a spatially comprehensive dataset of phytoplankton pigment concentrations, particulate absorption and particle size distribution and compared simple bio-optical and particle property relationships as a function of chlorophyll a. Similar to previous studies we find that the chlorophyll-specific phytoplankton absorption coefficient is significantly lower than in other oceans at comparable chlorophyll concentrations. This appears to be driven in part by lower concentrations of accessory pigments per unit chlorophyll a as well as increased pigment packaging due to relatively larger sized phytoplankton at low chlorophyll a than is typically observed in other oceans. We find that the contribution of microphytoplankton (>20 µm size) to chlorophyll a estimates of phytoplankton biomass is significantly higher than expected for the given chlorophyll a concentration, especially in higher latitudes south of the Southern Antarctic Circumpolar Current Front. Phytoplankton pigments are more packaged in larger cells, which resulted in a flattening of phytoplankton spectra as measured in these samples when compared to other ocean regions with similar chlorophyll a concentration. Additionally, we find that at high latitude locations in the Southern Ocean, pheopigment concentrations can exceed mono-vinyl chlorophyll a concentrations. Finally, we observed very different relationships between particle volume and chlorophyll a concentrations in high and low latitude Southern Ocean waters, driven by differences in phytoplankton community composition and acclimation to environmental conditions and varying contribution of non-algal particles to the particulate matter. Our data confirm that, as previously suggested, the relationships between bio-optical properties and chlorophyll a in the Southern Ocean are different to other oceans. In addition, distinct bio-optical properties were evident between high and low latitude regions of the Southern Ocean basin. Here we provide a region-specific set of power law functions describing the phytoplankton absorption spectrum as a function of chlorophyll a.


Assuntos
Clorofila/análise , Monitoramento Ambiental/métodos , Oceanos e Mares , Material Particulado/análise , Fitoplâncton/química , Biomassa , Humanos , Estudos Retrospectivos
4.
J Phycol ; 48(1): 145-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27009659

RESUMO

Iron availability limits primary production in >30% of the world's oceans; hence phytoplankton have developed acclimation strategies. In particular, cyanobacteria express IsiA (iron-stress-induced) under iron stress, which can become the most abundant chl-binding protein in the cell. Within iron-limited oceanic regions with significant cyanobacterial biomass, IsiA may represent a significant fraction of the total chl. We spectroscopically measured the effective cross-section of the photosynthetic reaction center PSI (σPSI ) in vivo and biochemically quantified the absolute abundance of PSI, PSII, and IsiA in the model cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that accumulation of IsiA results in a ∼60% increase in σPSI , in agreement with the theoretical increase in cross-section based on the structure of the biochemically isolated IsiA-PSI supercomplex from cyanobacteria. Deriving a chl budget, we suggest that IsiA plays a primary role as a light-harvesting antenna for PSI. On progressive iron-stress in culture, IsiA continues to accumulate without a concomitant increase in σPSI , suggesting that there may be a secondary role for IsiA. In natural populations, the potential physiological significance of the uncoupled pool of IsiA remains to be established. However, the functional role as a PSI antenna suggests that a large fraction of IsiA-bound chl is directly involved in photosynthetic electron transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA