Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544070

RESUMO

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

2.
Phys Chem Chem Phys ; 23(30): 15989-15993, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34318813

RESUMO

On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling. We showed that some or all of Cu3+ ions can be reduced to Cu2+ by electron doping, as in the well-known KCuF3. Significant similarities between the electronic structures calculated in the framework of DFT+U suggest that doped CuF3 and Cu2F5 may exhibit high-Tc superconductivity with the same mechanism as in cuprates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA