RESUMO
Although dairy goat production, characterized by traditional production on small farms, is an important source of income in the Czech Republic and Slovakia, locally adapted breeds have not been fully consolidated over the last 100 yr due to large fluctuations in population size and inconsistent breeding programs that allowed for different crossbreeding strategies. Our main objective in this study was therefore to assess the conservation status of 4 Czech (Alpine Goat, White Shorthair, Brown Shorthair, and Czech Landrace) and 1 Slovak (Slovak White Shorthair) local goat breeds, to analyze their population structure and admixture, and to estimate their relatedness to several neighboring breeds. Our analyses included 142 goats belonging to 5 local breeds genotyped with the Illumina 50K BeadChip, and 618 previously genotyped animals representing 15 goat breeds from Austria and Switzerland (all analyses based on 46,862 autosomal SNPs and 760 animals). In general, the conservation status of the Czech and Slovak local goat breeds was satisfactory, with the exception of the Brown Shorthair goat, as the analyzed parameters (heterozygosity, haplotype richness, runs of homozygosity-based inbreeding, and effective population size) were mostly above the median of 20 breeds. However, for all 5 Czech and Slovakian breeds, an examination of historical effective population size indicated a substantial decline about 8 to 22 generations ago. In addition, our study revealed that the Czech and Slovakian breeds are not fully consolidated; for instance, White Shorthair and Brown Shorthair were not clearly distinguishable. Considerable admixture, especially in Czech Landrace (effective number of parental clusters = 4.2), and low but numerous migration rates from other Austrian and Swiss breeds were found. These results provide valuable insights for future breeding programs and genetic diversity management of local Czech and Slovak goat breeds.
Assuntos
Cruzamento , Cabras , Animais , Cabras/genética , República Tcheca , Eslováquia , Genótipo , Polimorfismo de Nucleotídeo Único , GenômicaRESUMO
In contrast to the livestock industry, sperm cryopreservation has not yet been successfully established in the poultry industry. This is because poultry sperm cells have a unique shape and membrane fluidity, differing from those of livestock sperm. The objective of this review is to discuss the cellular and molecular characteristics of rooster spermatozoa as a cause for their generally low freezability. Furthermore, here, we discuss novel developments in the field of semen extenders, cryoprotectants, and freezing processes, all with the purpose of increasing the potential of rooster sperm cryopreservation. Currently, it is very important to improve cryopreservation of rooster sperm on a global scale for the protection of gene resources due to the incidence of epidemics such as avian influenza.
Assuntos
Preservação do Sêmen , Sêmen , Masculino , Animais , Galinhas , Preservação do Sêmen/veterinária , Espermatozoides , Congelamento , Crioprotetores , Criopreservação/veterinária , Aves Domésticas , Motilidade dos EspermatozoidesRESUMO
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FSTâ¯=â¯0.14) than in Sumava sheep (FSTâ¯=â¯0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5â¯Mb long for both breeds. ROH segments longer than 15â¯Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.
Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Endogamia , Homozigoto , Genômica , GenótipoRESUMO
Milk production is influenced by many factors, including genetic and environmental factors and their interactions. Animal health, especially udder health, is usually evaluated by the number of somatic cells. The present study described the effect of polymorphisms in the ACACA, BTN1A1, LPL, and SCD genes on the daily milk yield, fat, and protein percentages and somatic cell count. In this study, 590 White Shorthaired (WSH) and Brown Shorthaired (BSH) goats were included. SNP genotyping was performed by PCR-RFLP and multiplex PCR followed by SNaPshot minisequencing analysis. The linear mixed model with repeated measurement was used to identify the genetic associations between the studied genes/SNPs and chosen traits. All selected genes were polymorphic in the tested goat populations and showed significant associations with milk traits. Only BTN1A1 (SNP g.599 A > G) showed a significant association with the somatic cell score. After Bonferroni correction, a significant effect of LPL g.300G > A on daily milk yield and fat percentage, LPL g.185G > T on protein percentage, and LPL G50C, SCD EX3_15G > A, and SCD EX3_68A > G on fat percentage was found. The importance of environmental factors, such as the herd-year effect, month of milking, and lactation order on all milk performance indicators was confirmed.
RESUMO
Xenogenic mammalian sperm heads injected into mouse ovulated oocytes decondense and form pronuclei in which sperm DNA parameters can be evaluated. We suggest that this approach can be used for the assessment of sperm DNA damage level and the evaluation of how certain sperm treatments (freezing, lyophilization, etc.) influence the quality of spermatozoa.
RESUMO
Sequence differences are considered to be the basic cause of developmental failure in interspecies embryos when more distant species are combined. However, other phenomena, such as insufficient or excessive quantity of specific cellular factors, might also influence the outcome. These effects are usually not considered. One of the organelles shown to contain different amount of proteins is the oocyte nucleolus-like body. Here we show that upon interspecies transfer, a single porcine nucleolus-like body is unable to support the development of a mouse parthenogenetic embryo derived from an enucleolated oocyte. However, when the amount of the porcine nucleolar material is increased to equalize the amount of mouse nucleolar material by transferring two nucleolus-like bodies, mouse embryos are able to pass the developmental block elicited by enucleolation. These embryos progress to the blastocyst stage at rates comparable to controls. Thus, using the model of an interspecies nucleolus-like body transplantation between mouse and pig oocytes, we show that an inadequate amount of nucleolar factors, rather than the species origin, affects the development. In a wider context of interspecies nuclear transfer schemes, the observed incompatibility between more distant species might not stem simply from sequence differences but also from improper dosage of key cellular factors.
Assuntos
Desenvolvimento Embrionário , Oócitos , Animais , Blastocisto , Nucléolo Celular , Feminino , Camundongos , Técnicas de Transferência Nuclear/veterinária , Gravidez , SuínosRESUMO
In nearly all somatic cells, the ribosome biosynthesis is a key activity. The same is true also for mammalian oocytes and early embryos. This activity is intimately linked to the most prominent nuclear organelles - the nucleoli. Interestingly, during a short period around fertilization, the nucleoli in oocytes and embryos transform into ribosome-biosynthesis-inactive structures termed nucleolus-like or nucleolus precursor bodies (NPBs). For decades, researchers considered these structures to be passive repositories of nucleolar proteins used by the developing embryo to rebuild fully functional, ribosome-synthesis competent nucleoli when required. Recent evidence, however, indicates that while these structures are unquestionably essential for development, the material is largely dispensable for the formation of active embryonic nucleoli. In this mini-review, we will describe some unique features of oocytes and embryos with respect to ribosome biogenesis and the changes in the structure of oocyte and embryonic nucleoli that reflect this. We will also describe some of the different approaches that can be used to study nucleoli and NPBs in embryos and discuss the different results that might be expected. Finally, we ask whether the main function of nucleolar precursor bodies might lie in the genome organization and remodelling and what the involved components might be.