RESUMO
Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.
RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0287412.].
RESUMO
BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.
Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Mitocôndrias , Caracteres Sexuais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Feminino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacosRESUMO
Gulf War Illness (GWI) is a major health problem for approximately 250,000 Gulf War (GW) veterans, but the etiology of GWI is unclear. We hypothesized that mitochondrial dysfunction is an important contributor to GWI, based on the similarity of some GWI symptoms to those occurring in some mitochondrial diseases; the plausibility that certain pollutants to which GW veterans were exposed affect mitochondria; mitochondrial effects observed in studies in laboratory models of GWI; and previous evidence of mitochondrial outcomes in studies in GW veterans. A primary role of mitochondria is generation of energy via oxidative phosphorylation. However, direct assessment of mitochondrial respiration, reflecting oxidative phosphorylation, has not been carried out in veterans with GWI. In this case-control observational study, we tested multiple measures of mitochondrial function and integrity in a cohort of 114 GW veterans, 80 with and 34 without GWI as assessed by the Kansas definition. In circulating white blood cells, we analyzed multiple measures of mitochondrial respiration and extracellular acidification, a proxy for non-aerobic energy generation; mitochondrial DNA (mtDNA) copy number; mtDNA damage; and nuclear DNA damage. We also collected detailed survey data on demographics; deployment; self-reported exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents; and current biometrics, health and activity levels. We observed a 9% increase in mtDNA content in blood in veterans with GWI, but did not detect differences in DNA damage. Basal and ATP-linked oxygen consumption were respectively 42% and 47% higher in veterans without GWI, after adjustment for mtDNA amount. We did not find evidence for a compensatory increase in anaerobic energy generation: extracellular acidification was also lower in GWI (12% lower at baseline). A subset of 27 and 26 veterans returned for second and third visits, allowing us to measure stability of mitochondrial parameters over time. mtDNA CN, mtDNA damage, ATP-linked OCR, and spare respiratory capacity were moderately replicable over time, with intraclass correlation coefficients of 0.43, 0.44, 0.50, and 0.57, respectively. Other measures showed higher visit-to-visit variability. Many measurements showed lower replicability over time among veterans with GWI compared to veterans without GWI. Finally, we found a strong association between recalled exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents and GWI (p < 0.01, p < 0.01, and p < 0.0001, respectively). Our results demonstrate decreased mitochondrial respiratory function as well as decreased glycolytic activity, both of which are consistent with decreased energy availability, in peripheral blood mononuclear cells in veterans with GWI.
Assuntos
Síndrome do Golfo Pérsico , Praguicidas , Veteranos , Humanos , Trifosfato de Adenosina , Armas Biológicas , DNA Mitocondrial , Metabolismo Energético , Guerra do Golfo , Leucócitos Mononucleares , Brometo de Piridostigmina , Estudos de Casos e ControlesRESUMO
BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efeitos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Neurônios Dopaminérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Açúcares/efeitos adversos , Açúcares/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Modelos Animais de DoençasRESUMO
Aims: Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results: A 48-hour developmental exposure to PCP causing mild growth delay (â¼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity â¼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 µM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 µM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation: This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions: Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.
RESUMO
Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.
Assuntos
Nanopartículas Metálicas , Prata , Humanos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Prata/farmacologiaRESUMO
Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.
Assuntos
Núcleo Celular/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Dosagem de Genes , Mitocôndrias/genética , Reação em Cadeia da Polimerase em Tempo Real , Animais , Caenorhabditis elegans/genética , DNA Fúngico/genética , Drosophila melanogaster/genética , Fundulidae/genética , Humanos , Camundongos , Oryzias/genética , Ratos , Saccharomyces cerevisiae/genética , Peixe-Zebra/genéticaRESUMO
The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the "Developmental Origins of Health and Disease" paradigm), but reports from other fields often report beneficial ("mitohormetic") responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans. This exposure led to life-long reductions in mtDNA copy number and steady-state ATP levels, accompanied by increased oxygen consumption and altered metabolite profiles, suggesting inefficient mitochondrial function. Exposed nematodes were also developmentally delayed, reached smaller adult size, and were rendered more susceptible to subsequent exposure to chemical mitotoxicants. Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria.
Assuntos
Caenorhabditis elegans , Dano ao DNA , Animais , Caenorhabditis elegans/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , OxirreduçãoRESUMO
Rotenone, a mitochondrial complex I inhibitor, has been widely used to study the effects of mitochondrial dysfunction on dopaminergic neurons in the context of Parkinson's disease. Although the deleterious effects of rotenone are well documented, we found that young adult Caenorhabditis elegans showed resistance to 24 and 48 h rotenone exposures. To better understand the response to rotenone in C. elegans, we evaluated mitochondrial bioenergetic parameters after 24 and 48 h exposures to 1 µM or 5 µM rotenone. Results suggested upregulation of mitochondrial complexes II and V following rotenone exposure, without major changes in oxygen consumption or steady-state ATP levels after rotenone treatment at the tested concentrations. We found evidence that the glyoxylate pathway (an alternate pathway not present in higher metazoans) was induced by rotenone exposure; gene expression measurements showed increases in mRNA levels for two complex II subunits and for isocitrate lyase, the key glyoxylate pathway enzyme. Targeted metabolomics analyses showed alterations in the levels of organic acids, amino acids, and acylcarnitines, consistent with the metabolic restructuring of cellular bioenergetic pathways including activation of complex II, the glyoxylate pathway, glycolysis, and fatty acid oxidation. This expanded understanding of how C. elegans responds metabolically to complex I inhibition via multiple bioenergetic adaptations, including the glyoxylate pathway, will be useful in interrogating the effects of mitochondrial and bioenergetic stressors and toxicants.
Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rotenona/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Metabolismo Energético/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Desacopladores/toxicidadeRESUMO
Purpose: Cigarette smoking has been implicated in the pathogenesis of AMD. Integrin dysfunctions have been associated with AMD. Herein, we investigate the effect of risuteganib (RSG), an integrin regulator, on RPE cell injury induced by hydroquinone (HQ), an important oxidant in cigarette smoke. Methods: Cultured human RPE cells were treated with HQ in the presence or absence of RSG. Cell death, mitochondrial respiration, reactive oxygen species production, and mitochondrial membrane potential were measured by flow cytometry, XFe24 analyzer, and fluorescence plate reader, respectively. Whole transcriptome analysis and gene expression were analyzed by Illumina RNA sequencing and quantitative PCR, respectively. F-actin aggregation was visualized with phalloidin. Levels of heme oxygenase-1, P38, and heat shock protein 27 proteins were measured by Western blot. Results: HQ induced necrosis and apoptosis, decreased mitochondrial bioenergetics, increased reactive oxygen species levels, decreased mitochondrial membrane potential, increased F-actin aggregates, and induced phosphorylation of P38 and heat shock protein 27. HQ, but not RSG alone, induced substantial transcriptome changes that were regulated by RSG cotreatment. RSG cotreatment significantly protected against HQ-induced necrosis and apoptosis, prevented HQ-reduced mitochondrial bioenergetics, decreased HQ-induced reactive oxygen species production, improved HQ-disrupted mitochondrial membrane potential, reduced F-actin aggregates, decreased phosphorylation of P38 and heat shock protein 27, and further upregulated HQ-induced heme oxygenase-1 protein levels. Conclusions: RSG has no detectable adverse effects on healthy RPE cells, whereas RSG cotreatment protects against HQ-induced injury, mitochondrial dysfunction, and actin reorganization, suggesting a potential role for RSG therapy to treat retinal diseases such as AMD.
Assuntos
Hidroquinonas/toxicidade , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/lesões , Apoptose/efeitos dos fármacos , Western Blotting , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismoRESUMO
Purpose: Oxidative stress in retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells. Methods: Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison. Results: RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQ-treated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation. Conclusions: Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/genética , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Resveratrol/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Western Blotting/métodos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroquinonas/farmacologia , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real/métodos , Epitélio Pigmentado da Retina/citologiaRESUMO
BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Dinâmica Mitocondrial , Doença de Parkinson/genética , Tolerância a Radiação/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos da radiação , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Mitofagia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversosRESUMO
In order to develop a better understanding of the role environmental toxicants may play in the onset and progression of neurodegenerative diseases, it has become increasingly important to optimize sensitive methods for quickly screening toxicants to determine their ability to disrupt neuronal function. The nematode Caenorhabditis elegans can help with this effort. This species has an integrated nervous system producing behavioral function, provides easy access for molecular studies, has a rapid lifespan, and is an inexpensive model. This study focuses on methods of measuring neurodegeneration involving the dopaminergic system and the identification of compounds with actions that disrupt dopamine function in the model organism C. elegans. Several dopamine-mediated locomotory behaviors, Area Exploration, Body Bends, and Reversals, as well as Swimming-Induced Paralysis and Learned 2-Nonanone Avoidance, were compared to determine the best behavioral method for screening purposes. These behavioral endpoints were also compared to morphological scoring of neurodegeneration in the dopamine neurons. We found that in adult worms, Area Exploration is more advantageous than the other behavioral methods for identifying DA-deficient locomotion and is comparable to neuromorphological scoring outputs. For larval stage worms, locomotion was an unreliable endpoint, and neuronal scoring appeared to be the best method. We compared the wild-type N2 strain to the commonly used dat-1p::GFP reporter strains BY200 and BZ555, and we further characterized the dopamine-deficient strains, cat-2 e1112 and cat-2 n4547. In contrast to published results, we found that the cat-2 strains slowed on food almost as much as N2s. Both showed decreased levels of cat-2 mRNA and DA content, rather than none, with cat-2 e1112 having the greatest reduction in DA content in comparison to N2. Finally, we compared and contrasted strengths, limitations, cost, and equipment needs for all primary methods for analysis of the dopamine system in C. elegans.
Assuntos
Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Dopamina/deficiência , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/patologia , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/efeitos dos fármacos , Proteínas de Caenorhabditis elegans , Transportador 2 de Aminoácidos Catiônicos/genética , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica , Hidroxidopaminas/toxicidade , Larva , Locomoção/efeitos dos fármacosRESUMO
Mitochondrial DNA (mtDNA) copy number (CN) and damage in circulating white blood cells have been proposed as effect biomarkers for pollutant exposures. Studies have shown that mercury accumulates in mitochondria and affects mitochondrial function and integrity; however, these data are derived largely from experiments in model systems, rather than human population studies that evaluate the potential utility of mitochondrial exposure biomarkers. We measured mtDNA CN and damage in white blood cells (WBCs) from 83 residents of nine communities in the Madre de Dios region of the Peruvian Amazon that vary in proximity to artisanal and small-scale gold mining. Prior research from this region reported high levels of mercury in fish and a significant association between food consumption and human total hair mercury level of residents. We observed that mtDNA CN and damage were both associated with consumption of fruit and vegetables, higher diversity of fruit consumed, residential location, and health characteristics, suggesting common environmental drivers. Surprisingly, we observed negative associations of mtDNA damage with both obesity and age. We did not observe any association between total hair mercury or, in contrast to previous results, age, with either mtDNA damage or CN. The results of this exploratory study highlight the importance of combining epidemiological and laboratory research in studying the effects of stressors on mitochondria, suggesting that future work should incorporate nutritional and social characteristics, and caution should be taken when applying conclusions from epidemiological studies conducted in the developed world to other regions, as results may not be easily translated. Environ. Mol. Mutagen. 60: 197-210, 2019. © 2018 Wiley Periodicals, Inc.
Assuntos
Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/efeitos dos fármacos , Exposição Ambiental , Monitoramento Ambiental , Poluentes Ambientais , Peixes , Genética Populacional , Ouro , Humanos , Mineração , PeruRESUMO
BACKGROUND: Household air pollution is a major contributor to death and disability worldwide. Over 95% of rural Guatemalan households use woodstoves for cooking or heating. Woodsmoke contains carcinogenic or fetotoxic polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Increased PAHs and VOCs have been shown to increase levels of oxidative stress. OBJECTIVE: We examined PAH and VOC exposures among recently pregnant rural Guatemalan women exposed to woodsmoke and compared exposures to levels seen occupationally or among smokers. METHODS: Urine was collected from 23 women who were 3 months post-partum three times over 72h: morning (fasting), after lunch, and following dinner or use of wood-fired traditional sauna baths (samples=68). Creatinine-adjusted urinary concentrations of metabolites of four PAHs and eight VOCs were analyzed by liquid chromatography-mass spectrometry. Creatinine-adjusted urinary biomarkers of oxidative stress, 8-isoprostane and 8-OHdG, were analyzed using enzyme-linked immunosorbent assays (ELISA). Long-term (pregnancy through 3 months prenatal) exposure to particulate matter and airborne PAHs were measured. RESULTS: Women using wood-fueled chimney stoves are exposed to high levels of particulate matter (median 48h PM2.5 105.7µg/m3; inter-quartile range (IQR): 77.6-130.4). Urinary PAH and VOC metabolites were significantly associated with woodsmoke exposures: 2-naphthol (median (IQR) in ng/mg creatinine: 295.9 (74.4-430.9) after sauna versus 23.9 (17.1-49.5) fasting; and acrolein: 571.7 (429.3-1040.7) after sauna versus 268.0 (178.3-398.6) fasting. Urinary PAH (total PAH: ρ=0.89, p<0.001) and VOC metabolites of benzene (ρ=0.80, p<0.001) and acrylonitrile (ρ=0.59, p<0.05) were strongly correlated with long-term exposure to particulate matter. However urinary biomarkers of oxidative stress were not correlated with particulate matter (ρ=0.01 to 0.05, p>0.85) or PAH and VOC biomarkers (ρ=-0.20 to 0.38, p>0.07). Urinary metabolite concentrations were significantly greater than those of heavy smokers (mean cigarettes/day=18) across all PAHs. In 15 (65%) women, maximum 1-hydroxypyrene concentrations exceeded the occupational exposure limit of coke-oven workers. CONCLUSIONS: The high concentrations of urinary PAH and VOC metabolites among recently pregnant women is alarming given the detrimental fetal and neonatal effects of prenatal PAH exposure. As most women used chimney woodstoves, cleaner fuels are critically needed to reduce smoke exposure.
Assuntos
Poluentes Atmosféricos/urina , Hidrocarbonetos Policíclicos Aromáticos/urina , Compostos Orgânicos Voláteis/urina , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Feminino , Guatemala , Calefação , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Gravidez , Pirenos/urina , População Rural , Fumaça , Madeira , Adulto JovemRESUMO
Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p < 0.01), substantial time savings for primary cooks, a 72% reduction in PM2.5, a 78% reduction in PAH levels, and significant reductions in water-soluble organic carbon and nitrogen (p < 0.01) in household air samples. ICS use was associated with reduced time in the hospital with acute respiratory infection and reduced diastolic blood pressure but not with other health measurements. We find many significant gains from promoting rural biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.
Assuntos
Poluição do Ar em Ambientes Fechados , Biocombustíveis , Poluição do Ar , Mudança Climática , Culinária , Estudos Transversais , Humanos , ÍndiaRESUMO
Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.
Assuntos
Núcleo Celular/genética , Variações do Número de Cópias de DNA/genética , Dano ao DNA , DNA Mitocondrial/genética , Reação em Cadeia da Polimerase/métodos , Animais , Análise Mutacional de DNA , Primers do DNA/genética , HumanosRESUMO
The nematode Caenorhabditis elegans is extensively utilized in toxicity studies. C. elegans offers a high degree of homology with higher organisms, and its ease of use and relatively inexpensive maintenance have made it an attractive complement to mammalian and ecotoxicological models. C. elegans provides multiple benefits, including the opportunity to perform relatively high-throughput assays on whole organisms, a wide range of genetic tools permitting investigation of mechanisms and genetic sensitivity, and transparent bodies that facilitate toxicokinetic studies. This unit describes protocols for three nanotoxicity assays in C. elegans: lethality, growth, and reproduction. This unit focuses on how to use these well-established assays with nanoparticles, which are being produced in ever-increasing volume and exhibit physicochemical properties that require alteration of standard toxicity assays. These assays permit a broad phenotypic assessment of nanotoxicity in C. elegans, and, when used in combination with genetic tools and other assays, also permit mechanistic insight.
Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Nanopartículas/toxicidade , Testes de Toxicidade/métodos , Envelhecimento/patologia , Animais , Dose Letal Mediana , Reprodução/efeitos dos fármacosRESUMO
Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for isolation of both mtDNA and nuclear DNA (nucDNA) and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material and availability of specific PCR reagents.