Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1224356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492528

RESUMO

Introduction: Tularemia is mainly caused by Francisella tularensis (Ft) subsp. tularensis (Ftt) and Ft subsp. holarctica (Ftt) in humans and in more than 200 animal species including rabbits and hares. Human clinical manifestations depend on the route of infection and range from flu-like symptoms to severe pneumonia with a mortality rate up to 60% without treatment. So far, only 2D cell culture and animal models are used to study Francisella virulence, but the gained results are transferable to human infections only to a certain extent. Method: In this study, we firstly established an ex vivo human lung tissue infection model using different Francisella strains: Ftt Life Vaccine Strain (LVS), Ftt LVS ΔiglC, Ftt human clinical isolate A-660 and a German environmental Francisella species strain W12-1067 (F-W12). Human lung tissue was used to determine the colony forming units and to detect infected cell types by using spectral immunofluorescence and electron microscopy. Chemokine and cytokine levels were measured in culture supernatants. Results: Only LVS and A-660 were able to grow within the human lung explants, whereas LVS ΔiglC and F-W12 did not replicate. Using human lung tissue, we observed a greater increase of bacterial load per explant for patient isolate A-660 compared to LVS, whereas a similar replication of both strains was observed in cell culture models with human macrophages. Alveolar macrophages were mainly infected in human lung tissue, but Ftt was also sporadically detected within white blood cells. Although Ftt replicated within lung tissue, an overall low induction of pro-inflammatory cytokines and chemokines was observed. A-660-infected lung explants secreted slightly less of IL-1ß, MCP-1, IP-10 and IL-6 compared to Ftt LVS-infected explants, suggesting a more repressed immune response for patient isolate A-660. When LVS and A-660 were used for simultaneous co-infections, only the ex vivo model reflected the less virulent phenotype of LVS, as it was outcompeted by A-660. Conclusion: We successfully implemented an ex vivo infection model using human lung tissue for Francisella. The model delivers considerable advantages and is able to discriminate virulent Francisella from less- or non-virulent strains and can be used to investigate the role of specific virulence factors.


Assuntos
Francisella tularensis , Tularemia , Animais , Humanos , Coelhos , Camundongos , Francisella tularensis/genética , Tularemia/microbiologia , Citocinas/metabolismo , Pulmão/microbiologia , Quimiocinas/metabolismo , Vacinas Bacterianas , Camundongos Endogâmicos C57BL
2.
Int J Med Microbiol ; 313(4): 151583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331050

RESUMO

Francisella tularensis is the causative agent of tularemia, a zoonotic disease with a wide host range. F. tularensis ssp. holarctica (Fth) is of clinical relevance for European countries, including Germany. Whole genome sequencing methods, including canonical Single Nucleotide Polymorphism (canSNP) typing and whole genome SNP typing, have revealed that European Fth strains belong to a few monophyletic populations. The majority of German Fth isolates belong to two basal phylogenetic clades B.6 (biovar I) and B.12 (biovar II). Strains of B.6 and B.12 seem to differ in their pathogenicity, and it has been shown that strains of biovar II are resistant against erythromycin. In this study, we present data corroborating our previous data demonstrating that basal clade B.12 can be divided into clades B.71 and B.72. By applying phylogenetic whole genome analysis as well as proteome analysis, we could verify that strains of these two clades are distinct from one another. This was confirmed by measuring the intensity of backscatter light on bacteria grown in liquid media. Strains belonging to clades B.6, B.71 or B.72 showed clade-specific backscatter growth curves. Furthermore, we present the whole genome sequence of strain A-1341, as a reference genome of clade B.71, and whole proteomes comparison of Fth strains belonging to clades B.6, B.71 and B.72. Further research is necessary to investigate phenotypes and putative differences in pathogenicity of the investigated different clades of Fth to better understand the relationship between observed phenotypes, pathogenicity and distribution of Fth strains.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Filogenia , Tularemia/microbiologia , Zoonoses/microbiologia , Fenótipo
4.
Int J Med Microbiol ; 311(4): 151504, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906075

RESUMO

The metabolism of Legionella pneumophila strain Paris was elucidated during different time intervals of growth within its natural host Acanthamoeba castellanii. For this purpose, the amoebae were supplied after bacterial infection (t =0 h) with 11 mM [U-13C6]glucose or 3 mM [U-13C3]serine, respectively, during 0-17 h, 17-25 h, or 25-27 h of incubation. At the end of these time intervals, bacterial and amoebal fractions were separated. Each of these fractions was hydrolyzed under acidic conditions. 13C-Enrichments and isotopologue distributions of resulting amino acids and 3-hydroxybutyrate were determined by gas chromatography - mass spectrometry. Comparative analysis of the labelling patterns revealed the substrate preferences, metabolic pathways, and relative carbon fluxes of the intracellular bacteria and their amoebal host during the time course of the infection cycle. Generally, the bacterial infection increased the usage of exogenous glucose via glycolysis by A. castellanii. In contrast, carbon fluxes via the amoebal citrate cycle were not affected. During the whole infection cycle, intracellular L. pneumophila incorporated amino acids from their host into the bacterial proteins. However, partial bacterial de novo biosynthesis from exogenous 13C-Ser and, at minor rates, from 13C-glucose could be shown for bacterial Ala, Asp, Glu, and Gly. More specifically, the catabolic usage of Ser increased during the post-exponential phase of intracellular growth, whereas glucose was utilized by the bacteria throughout the infection cycle and not only late during infection as assumed on the basis of earlier in vitro experiments. The early usage of 13C-glucose by the intracellular bacteria suggests that glucose availability could serve as a trigger for replication of L. pneumophila inside the vacuoles of host cells.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Redes e Vias Metabólicas
5.
Viruses ; 13(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672748

RESUMO

Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.


Assuntos
Bacteriófagos/genética , Francisella/virologia , Myoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
6.
Int J Med Microbiol ; 310(4): 151426, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32444321

RESUMO

Recently, a new environmental Francisella strain, Francisella sp. strain W12-1067, has been identified in Germany. This strain is negative for the Francisella pathogenicity island (FPI) but exhibits a putative alternative type VI secretion system. Some known virulence factors of Francisella are present, but the pathogenic capacity of this species is not known yet. In silico genome analysis reveals the presence of a gene cluster tentatively enabling myo-inositol (MI) utilization via a putative inositol oxygenase. Labelling experiments starting from 2H-inositol demonstrate that this gene cluster is indeed involved in the metabolism of MI. We further show that, under in vitro conditions, supply of MI increases growth rates of strain W12-1067 in the absence of glucose and that the metabolism of MI is strongly reduced in a W12-1067 mutant lacking the MI gene cluster. The positive growth effect of MI in the absence of glucose is restored in this mutant strain by introducing the complete MI gene cluster. F. novicida Fx1 is also positive for the MI metabolizing gene cluster and MI again increases growth in a glucose-free medium, in contrast to F. novicida strain U112, which is shown to be a natural mutant of the MI metabolizing gene cluster. Labelling experiments of Francisella sp. strain W12-1067 in medium T containing 13C-glucose, 13C-serine or 13C-glycerol as tracers suggest a bipartite metabolism where glucose is mainly metabolized through glycolysis, but not through the Entner-Doudoroff pathway or the pentose phosphate pathway. Carbon flux from 13C-glycerol and 13C-serine is less active, and label from these tracers is transferred mostly into amino acids, lactate and fatty acids. Together, the metabolism of Francisella sp. strain W12-1067 seems to be more related to the respective one in F. novicida rather than in F. tularensis subsp. holarctica.


Assuntos
Carbono/metabolismo , Francisella/genética , Francisella/metabolismo , Inositol/metabolismo , Família Multigênica , Aminoácidos/metabolismo , Simulação por Computador , Francisella/patogenicidade , Genoma Bacteriano , Ilhas Genômicas , Glucose/metabolismo , Inositol Oxigenase/metabolismo , Microbiologia da Água
7.
Int J Med Microbiol ; 309(6): 151341, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31451389

RESUMO

Francisella tularensis is the causative agent of the human disease referred to as tularemia. Other Francisella species are known but less is understood about their virulence factors. The role of environmental amoebae in the life-cycle of Francisella is still under discussion. Francisella sp. strain W12-1067 (F-W12) is an environmental Francisella isolate recently identified in Germany which is negative for the Francisella pathogenicity island, but exhibits a putative alternative type VI secretion system. Putative virulence factors have been identified in silico in the genome of F-W12. In this work, we established a "scatter screen", used earlier for pathogenic Legionella, to verify experimentally and identify candidate fitness factors using a transposon mutant bank of F-W12 and Acanthamoeba lenticulata as host organism. In these experiments, we identified 79 scatter clones (amoeba sensitive), which were further analyzed by an infection assay identifying 9 known virulence factors, but also candidate fitness factors of F-W12 not yet described as fitness factors in Francisella. The majority of the identified genes encoded proteins involved in the synthesis or maintenance of the cell envelope (LPS, outer membrane, capsule) or in the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Further 13C-flux analysis of the Tn5 glucokinase mutant strain revealed that the identified gene indeed encodes the sole active glucokinase in F-W12. In conclusion, candidate fitness factors of the new Francisella species F-W12 were identified using the scatter screen method which might also be usable for other Francisella species.


Assuntos
Acanthamoeba/microbiologia , Proteínas de Bactérias/genética , Francisella/fisiologia , Francisella/patogenicidade , Fatores de Virulência/genética , Elementos de DNA Transponíveis , Francisella/genética , Francisella/crescimento & desenvolvimento , Glucoquinase/genética , Interações Hospedeiro-Patógeno , Viabilidade Microbiana , Mutagênese Insercional , Mutação
8.
Artigo em Inglês | MEDLINE | ID: mdl-29594068

RESUMO

We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.


Assuntos
Bacteriófagos/genética , Francisella/genética , Vetores Genéticos , Ilhas Genômicas , Plasmídeos , Transformação Bacteriana , Resistência ao Cloranfenicol/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Francisella/crescimento & desenvolvimento , Francisella/virologia , Francisella tularensis/genética , Humanos , Integrases/genética , Mutação , RNA de Transferência de Valina/genética , Recombinação Genética , Células U937
9.
Artigo em Inglês | MEDLINE | ID: mdl-28680859

RESUMO

Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella.


Assuntos
Francisella tularensis/metabolismo , Francisella/metabolismo , Redes e Vias Metabólicas , Aminoácidos/metabolismo , Parede Celular/química , Meios de Cultura/química , Francisella/crescimento & desenvolvimento , Francisella/patogenicidade , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/patogenicidade , Glucose/metabolismo , Glicerol/metabolismo , Polissacarídeos/metabolismo , Serina/metabolismo , Coloração e Rotulagem , Tularemia/metabolismo , Tularemia/microbiologia , Virulência
10.
J Bacteriol ; 199(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320877

RESUMO

Legionella oakridgensis causes Legionnaires' disease but is known to be less virulent than Legionella pneumophilaL. oakridgensis is one of the Legionella species that is nonflagellated. The genes of the flagellar regulon are absent, except those encoding the alternative sigma-28 factor (FliA) and its anti-sigma-28 factor (FlgM). Similar to L. oakridgensis, Legionella adelaidensis and Legionella londiniensis, located in the same phylogenetic clade, have no flagellar regulon, although both are positive for fliA and flgM Here, we investigated the role and function of both genes to better understand the role of FliA, the positive regulator of flagellin expression, in nonflagellated strains. We demonstrated that the FliA gene of L. oakridgensis encodes a functional sigma-28 factor that enables the transcription start from the sigma-28-dependent promoter site. The investigations have shown that FliA is necessary for full fitness of L. oakridgensis Interestingly, expression of FliA-dependent genes depends on the growth phase and temperature, as already shown for L. pneumophila strains that are flagellated. In addition, we demonstrated that FlgM is a negative regulator of FliA-dependent gene expression. FlgM seems to be degraded in a growth-phase- and temperature-dependent manner, instead of being exported into the medium as reported for most bacteria. The degradation of FlgM leads to an increase of FliA activity.IMPORTANCE A less virulent Legionella species, L. oakridgensis, causes Legionnaires' disease and is known to not have flagella, even though L. oakridgensis has the regulator of flagellin expression (FliA). This protein has been shown to be involved in the expression of virulence factors. Thus, the strain was chosen for use in this investigation to search for FliA target genes and to identify putative virulence factors of L. oakridgensis One of the five major target genes of FliA identified here encodes the anti-FliA sigma factor FlgM. Interestingly, in contrast to most homologs in other bacteria, FlgM in L. oakridgensis seems not to be transported from the cell so that FliA gets activated. In L. oakridgensis, FlgM seems to be degraded by protease activities.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella/metabolismo , Fator sigma/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/genética , Flagelos/metabolismo , Legionella/química , Legionella/genética , Filogenia , Regulon , Alinhamento de Sequência , Fator sigma/química , Fator sigma/genética
11.
J Biol Chem ; 291(12): 6471-82, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792862

RESUMO

Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen.


Assuntos
Hidroxibutiratos/metabolismo , Legionella pneumophila/metabolismo , Poliésteres/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Proibitinas , Serina/metabolismo
12.
Int J Med Microbiol ; 305(8): 874-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26358917

RESUMO

Recently, we identified a putative prophage on a genomic island (GI) within the genome sequence of Francisella hispaniensis isolate AS0-814 (Francisella tularensis subsp. novicida-like 3523) by the analysis of the CRISPR-Cas systems of Francisella. Various spacer DNAs within the CRISPR region of different F. tularensis subsp. novicida strains were found to be homologous to the putative prophage (Schunder et al., 2013, Int. J. Med. Microbiol. 303:51-60). Now we identified the GI (FhaGI-1) as a mobile element which is able to form a circular episomal structure. The circular episomal form of FhaGI-1 is generated by F. hispaniensis, and the excision of the island is an integrase-dependent and site-specific process. Furthermore, we could demonstrate that the excision of the island is also possible in other bacterial species (Escherichia coli). In addition, we could show that a genetically generated small variant of the island is also functional and, after its electroporation into strain F. tularensis subsp. holarctica LVS, the GI was stable and site-specifically integrated into the genome of the transformants. The integrase is sufficient for the integration and excision of the small variant into and from the DNA backbone, respectively. Thus, the element may be suitable to be used as a genetic tool in F. tularensis research. Furthermore, we identified the tRNA(Val) gene of Francisella as an integration site for GIs. Genomic island FphGI-1 was identified in Francisella philomiragia ATCC 25016. We were not able to detect the episomal form of this GI, probably due to a mutated attR site. However, we could demonstrate that integrative GIs are present in Francisella and that they may allow horizontal gene transfer between different Francisella species.


Assuntos
Francisella/genética , Ilhas Genômicas , Plasmídeos , Escherichia coli/genética , Integrases/genética , Integrases/metabolismo , Sequências Repetitivas Dispersas , Prófagos/genética , RNA de Transferência de Valina/genética , Recombinação Genética
13.
Int J Med Microbiol ; 305(8): 828-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26294350

RESUMO

In 2009/2010 an outbreak of Legionnaires' disease with 64 cases including four fatalities took place in the city of Ulm/Neu-Ulm in Germany. L. pneumophila serogroup 1, mAb type Knoxville, sequence type (ST) 62 was identified as the epidemic strain. This strain was isolated from eight patients and from a cooling tower in the city of Ulm. Based on whole genome sequencing data from one patient strain, we identified an Lvh type IV secretion system containing a CRISPR-Cas system. The CRISPR sequence contains 38 spacer DNA sequences. We used these variable DNA spacers to further subtype the outbreak strain as well as six epidemiologically unrelated strains of CRISPR-Cas positive ST62 strains isolated at various regions in Germany. The first 12 spacer DNAs of eight patient isolates and three environmental isolates from the suspected source of infection were analyzed and found to be identical. Spacer DNAs were identified in further six epidemiologically unrelated patient isolates of L. pneumophila of ST62 in addition to the 12 "core" spacers. The presence of new spacer DNAs at the 5' site downstream of the first repeat indicates that these CRISPR-Cas systems seem to be functional. PCR analysis revealed that not all L. pneumophila sg1 ST62 strains investigated exhibited a CRISPR-Cas system. In addition, we could demonstrate that the CRISPR-Cas system is localized on a genomic island (LpuGI-Lvh) which can be excised from the chromosome and therefore may be transferable horizontally to other L. pneumophila strains.


Assuntos
Sistemas CRISPR-Cas , Surtos de Doenças , Variação Genética , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Microbiologia Ambiental , Ilhas Genômicas , Genótipo , Alemanha/epidemiologia , Humanos , Legionella pneumophila/isolamento & purificação , Epidemiologia Molecular
14.
BMC Microbiol ; 14: 169, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24961323

RESUMO

BACKGROUND: Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. RESULTS: We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. CONCLUSIONS: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Francisella/genética , Francisella/fisiologia , Genoma Bacteriano , Análise de Sequência de DNA , Microbiologia da Água , Animais , Linhagem Celular , Análise por Conglomerados , Francisella/crescimento & desenvolvimento , Francisella/isolamento & purificação , Alemanha , Humanos , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Homologia de Sequência , Cloreto de Sódio/metabolismo , Temperatura , Fatores de Virulência/genética
15.
Int J Med Microbiol ; 303(8): 514-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932911

RESUMO

Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.


Assuntos
Amoeba/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Legionella/crescimento & desenvolvimento , Legionella/genética , Análise de Sequência de DNA , Composição de Bases , Genes Bacterianos , Humanos , Legionella/isolamento & purificação , Doença dos Legionários/microbiologia , Dados de Sequência Molecular
16.
Int J Med Microbiol ; 303(2): 51-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23333731

RESUMO

Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.


Assuntos
Francisella tularensis/genética , Genoma Bacteriano , Bacteriófagos/genética , Biologia Computacional , Plasmídeos , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
17.
Arch Microbiol ; 194(12): 977-89, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23011748

RESUMO

In Legionella pneumophila, the regulation of the flagellum and the expression of virulence traits are linked. FleQ, RpoN and FliA are the major regulators of the flagellar regulon. We demonstrated here that all three regulatory proteins mentioned (FleQ, RpoN and FliA) are necessary for full in vivo fitness of L. pneumophila strains Corby and Paris. In this study, we clarified the role of FleQ for fliA expression from the level of mRNA toward protein translation. FleQ enhanced fliA expression, but FleQ and RpoN were not necessary for basal expression. In addition, we identified the initiation site of fliA in L. pneumophila and found a putative σ(70) promoter element localized upstream. The initiation site was not influenced in the ΔfleQ or ΔrpoN mutant strain. We demonstrated that there is no significant difference in the regulation of fliA between strains Corby and Paris, but the FleQ-dependent induction of fliA transcription in the exponential phase is stronger in strain Paris than in strain Corby. In addition, we showed for the first time the presence of a straight hook at the pole of the non-flagellated ΔfliA and ΔfliD mutant strains by electron microscopy, indicating the presence of an intact basal body in these strains.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Bases , Flagelos/genética , Flagelina/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Legionella pneumophila/metabolismo , Legionella pneumophila/ultraestrutura , Viabilidade Microbiana/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Regulon/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
18.
Int J Med Microbiol ; 301(2): 133-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20965781

RESUMO

Legionella pneumophila (Lp) is the causative agent of Legionnaires' disease, an atypical pneumonia. Lp is found in freshwater habitats and replicates within different protozoa (amoebae). It is known that Lp uses amino acids as primary energy and carbon sources for replication. However, very recently it was reported that Lp is able to metabolize also carbohydrates (glucose). Here, we present for the first time experimental evidence that the lpp0489 [gamA] gene encodes a eukaryotic-like glucoamylase (GamA) responsible for the glycogen- and starch-degrading activities of Lp. Although not essential for intra- and extracellular growth, we showed that GamA is expressed and active during intracellular replication in Acanthamoeba castellanii, suggesting that Lp is degrading glycogen during intracellular replication. Altogether, these findings indicate that Lp is indeed able to degrade exogenous polysaccharides and to utilize carbohydrates (glucose).


Assuntos
Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Glicogênio/metabolismo , Legionella pneumophila/enzimologia , Legionella pneumophila/metabolismo , Amido/metabolismo , Acanthamoeba castellanii/microbiologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Legionella pneumophila/genética
19.
J Biol Chem ; 284(40): 27185-94, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19640837

RESUMO

Legionella pneumophila possesses several phospholipases capable of host cell manipulation and lung damage. Recently, we discovered that the major cell-associated hemolytic phospholipase A (PlaB) shares no homology to described phospholipases and is dispensable for intracellular replication in vitro. Nevertheless, here we show that PlaB is the major lipolytic activity in L. pneumophila cell infections and that PlaB utilizes a typical catalytic triad of Ser-Asp-His for effective hydrolysis of phospholipid substrates. Crucial residues were found to be located within the N-terminal half of the protein, and amino acids embedding these active sites were unique for PlaB and homologs. We further showed that catalytic activity toward phosphatidylcholine but not phosphatidylglycerol is directly linked to hemolytic potential of PlaB. Although the function of the prolonged PlaB C terminus remains to be elucidated, it is essential for lipolysis, since the removal of 15 amino acids already abolishes enzyme activity. Additionally, we determined that PlaB preferentially hydrolyzes long-chain fatty acid substrates containing 12 or more carbon atoms. Since phospholipases play an important role as bacterial virulence factors, we examined cell-associated enzymatic activities among L. pneumophila clinical isolates and non-pneumophila species. All tested clinical isolates showed comparable activities, whereas of the non-pneumophila species, only Legionella gormanii and Legionella spiritensis possessed lipolytic activities similar to those of L. pneumophila and comprised plaB-like genes. Interestingly, phosphatidylcholine-specific phospholipase A activity and hemolytic potential were more pronounced in L. pneumophila. Therefore, hydrolysis of the eukaryotic membrane constituent phosphatidylcholine triggered by PlaB could be an important virulence tool for Legionella pathogenicity.


Assuntos
Hemólise , Legionella pneumophila/enzimologia , Lipólise , Fosfolipases A/química , Fosfolipases A/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Ácidos Graxos/química , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Hidrólise , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipases A/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato , Células U937
20.
J Bacteriol ; 188(4): 1218-26, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16452402

RESUMO

Legionella pneumophila possesses a variety of secreted and cell-associated hydrolytic activities that could be involved in pathogenesis. The activities include phospholipase A, lysophospholipase A, glycerophospholipid:cholesterol acyltransferase, lipase, protease, phosphatase, RNase, and p-nitrophenylphosphorylcholine (p-NPPC) hydrolase. Up to now, there have been no data available on the regulation of the enzymes in L. pneumophila and no data at all concerning the regulation of bacterial phospholipases A. Therefore, we used L. pneumophila mutants in the genes coding for the global regulatory proteins RpoS and LetA to investigate the dependency of hydrolytic activities on a global regulatory network proposed to control important virulence traits in L. pneumophila. Our results show that both L. pneumophila rpoS and letA mutants exhibit on the one hand a dramatic reduction of secreted phospholipase A and glycerophospholipid:cholesterol acyltransferase activities, while on the other hand secreted lysophospholipase A and lipase activities were significantly increased during late logarithmic growth phase. The cell-associated phospholipase A, lysophospholipase A, and p-NPPC hydrolase activities, as well as the secreted protease, phosphatase, and p-NPPC hydrolase activities were significantly decreased in both of the mutant strains. Only cell-associated phosphatase activity was slightly increased. In contrast, RNase activity was not affected. The expression of plaC, coding for a secreted acyltransferase, phospholipase A, and lysophospholipase A, was found to be regulated by LetA and RpoS. In conclusion, our results show that RpoS and LetA affect phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of L. pneumophila in a similar way, thereby corroborating the existence of the LetA/RpoS regulation cascade.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/genética , Lisofosfolipase/metabolismo , Fosfolipases A/metabolismo , Fator sigma/fisiologia , Hidrólise , Legionella pneumophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA