Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(19): 4202-4216.e9, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729913

RESUMO

Proper centrosome number and function relies on the accurate assembly of centrioles, barrel-shaped structures that form the core duplicating elements of the organelle. The growth of centrioles is regulated in a cell cycle-dependent manner; while new daughter centrioles elongate during the S/G2/M phase, mature mother centrioles maintain their length throughout the cell cycle. Centriole length is controlled by the synchronized growth of the microtubules that ensheathe the centriole barrel. Although proteins exist that target the growing distal tips of centrioles, such as CP110 and Cep97, these proteins are generally thought to suppress centriolar microtubule growth, suggesting that distal tips may also contain unidentified counteracting factors that facilitate microtubule polymerization. Currently, a mechanistic understanding of how distal tip proteins balance microtubule growth and shrinkage to either promote daughter centriole elongation or maintain centriole length is lacking. Using a proximity-labeling screen in Drosophila cells, we identified Cep104 as a novel component of a group of evolutionarily conserved proteins that we collectively refer to as the distal tip complex (DTC). We found that Cep104 regulates centriole growth and promotes centriole elongation through its microtubule-binding TOG domain. Furthermore, analysis of Cep104 null flies revealed that Cep104 and Cep97 cooperate during spermiogenesis to align spermatids and coordinate individualization. Lastly, we mapped the complete DTC interactome and showed that Cep97 is the central scaffolding unit required to recruit DTC components to the distal tip of centrioles.


Assuntos
Centríolos , Proteínas Associadas aos Microtúbulos , Masculino , Animais , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Drosophila/metabolismo , Centrossomo/metabolismo , Espermatogênese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Mol Biol Cell ; 34(8): ar80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163316

RESUMO

Polo-like kinase 4 (Plk4) is the master-regulator of centriole assembly, and cell cycle-dependent regulation of its activity maintains proper centrosome number. During most of the cell cycle, Plk4 levels are nearly undetectable due to its ability to autophosphorylate and trigger its own ubiquitin-mediated degradation. However, during mitotic exit, Plk4 forms a single aggregate on the centriole surface to stimulate centriole duplication. Whereas most Polo-like kinase family members are monomeric, Plk4 is unique because it forms homodimers. Notably, Plk4 trans-autophosphorylates a degron near its kinase domain, a critical step in autodestruction. While it is thought that the purpose of homodimerization is to promote trans-autophosphorylation, this has not been tested. Here, we generated separation-of-function Plk4 mutants that fail to dimerize and show that homodimerization creates a binding site for the Plk4 activator, Asterless. Surprisingly, however, Plk4 dimer mutants are catalytically active in cells, promote centriole assembly, and can trans-autophosphorylate through concentration-dependent condensate formation. Moreover, we mapped and then deleted the weak-interacting regions within Plk4 that mediate condensation and conclude that dimerization and condensation are not required for centriole assembly. Our findings suggest that Plk4 dimerization and condensation function simply to down-regulate Plk4 and suppress centriole overduplication.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Centríolos/metabolismo , Dimerização , Linhagem Celular , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Fosforilação
3.
Genes Dev ; 36(11-12): 647-649, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835509

RESUMO

Polo-like kinase 4 (Plk4) is the master regulator of centriole assembly. Several evolutionarily conserved mechanisms strictly regulate Plk4 abundance and activity to ensure cells maintain a proper number of centrioles. In this issue of Genes & Development, Phan et al. (pp. 718-736) add to this growing list by describing a new mechanism of control that restricts Plk4 translation through competitive ribosome binding at upstream open reading frames (uORFs) in the mature Plk4 mRNA. Fascinatingly, this mechanism is especially critical in the development of primordial germ cells in mice that are transcriptionally hyperactive and thus exquisitely sensitive to Plk4 mRNA regulation.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Diagnostics (Basel) ; 12(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328229

RESUMO

The microenvironment of solid tumors is dynamic and frequently contains pockets of low oxygen levels (hypoxia) surrounded by oxygenated tissue. Indeed, a compromised vasculature is a hallmark of the tumor microenvironment, creating both spatial gradients and temporal variability in oxygen availability. Notably, hypoxia associates with increased metastasis and poor survival in patients. Therefore, to aid therapeutic decisions and better understand hypoxia's role in cancer progression, it is critical to identify endogenous biomarkers of hypoxia to spatially phenotype oncogenic lesions in human tissue, whether precancerous, benign, or malignant. Here, we characterize the glucose transporter GLUT3/SLC2A3 as a biomarker of hypoxic prostate epithelial cells and prostate tumors. Transcriptomic analyses of non-tumorigenic, immortalized prostate epithelial cells revealed a highly significant increase in GLUT3 expression under hypoxia. Additionally, GLUT3 protein increased 2.4-fold in cultured hypoxic prostate cell lines and was upregulated within hypoxic regions of xenograft tumors, including two patient-derived xenografts (PDX). Finally, GLUT3 out-performs other established hypoxia markers; GLUT3 staining in PDX specimens detects 2.6-8.3 times more tumor area compared to a mixture of GLUT1 and CA9 antibodies. Therefore, given the heterogeneous nature of tumors, we propose adding GLUT3 to immunostaining panels when trying to detect hypoxic regions in prostate samples.

5.
Cell Mol Life Sci ; 78(21-22): 6775-6795, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476544

RESUMO

The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.


Assuntos
Centrossomo/fisiologia , Instabilidade Cromossômica/genética , Animais , Doenças Genéticas Inatas/genética , Humanos , Interfase/genética , Mitose/genética , Neoplasias/genética , Organelas/genética
6.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841145

RESUMO

During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2-G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Ciclo Celular/genética , Linhagem Celular , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/genética , Ligação Proteica/genética
7.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31130353

RESUMO

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Assuntos
Proteínas Cdh1/metabolismo , Centríolos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/fisiologia , Animais , Proteínas Cdh1/genética , Ciclo Celular , Células Cultivadas , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Células-Tronco Neurais/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética
8.
J Cell Biol ; 217(4): 1217-1231, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29496738

RESUMO

Polo-like kinase 4 (Plk4) initiates an early step in centriole assembly by phosphorylating Ana2/STIL, a structural component of the procentriole. Here, we show that Plk4 binding to the central coiled-coil (CC) of Ana2 is a conserved event involving Polo-box 3 and a previously unidentified putative CC located adjacent to the kinase domain. Ana2 is then phosphorylated along its length. Previous studies showed that Plk4 phosphorylates the C-terminal STil/ANa2 (STAN) domain of Ana2/STIL, triggering binding and recruitment of the cartwheel protein Sas6 to the procentriole assembly site. However, the physiological relevance of N-terminal phosphorylation was unknown. We found that Plk4 first phosphorylates the extreme N terminus of Ana2, which is critical for subsequent STAN domain modification. Phosphorylation of the central region then breaks the Plk4-Ana2 interaction. This phosphorylation pattern is important for centriole assembly and integrity because replacement of endogenous Ana2 with phospho-Ana2 mutants disrupts distinct steps in Ana2 function and inhibits centriole duplication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centríolos/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais
9.
Nat Commun ; 7: 12476, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558293

RESUMO

The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein-protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a 'domain-level' centrosome interactome using direct protein-protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Duplicação Gênica , Organelas/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA