Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-1): 064608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020980

RESUMO

We report on the self-part of the Van Hove correlation function, the correlation function describing the dynamics of a single molecule, of water and deuterated water. The correlation function is determined by transforming inelastic scattering spectra of neutrons or x rays over a wide range of momentum transfer Q and energy transfer E to space R and time t. The short-range diffusivity is estimated from the Van Hove correlation function in the framework of the Gaussian approximation. The diffusivity has been found to be different from the long-range macroscopic diffusivity, providing information about local atomic dynamics.

2.
J Phys Condens Matter ; 35(17)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812595

RESUMO

The structure beyond the nearest neighbor atoms in liquid and glass is characterized by the medium-range order (MRO). In the conventional approach, the MRO is considered to result directly from the short-range order (SRO) in the nearest neighbors. To this bottom-up approach starting with the SRO, we propose to add a top-down approach in which global collective forces drive liquid to form density waves. The two approaches are in conflict with each other, and the compromise produces the structure with the MRO. The driving force to produce density waves provides the stability and stiffness to the MRO, and controls various mechanical properties. This dual framework provides a novel perspective for description of the structure and dynamics of liquid and glass.

3.
Phys Rev E ; 104(6-1): 064110, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030900

RESUMO

The spatial atomic correlations in liquids and glasses extend often significantly beyond the nearest neighbors. Such correlations, called the medium-range order (MRO), affect many physical properties, but their nature is not well understood. In this article the variation of the MRO with temperature is calculated based upon the concept of the atomic-level pressure, focusing on simple liquids, such as metallic liquids. It is shown that the structural coherence length that characterizes MRO follows the Curie-Weiss law with a negative Curie temperature as observed by experiment and simulation. It is also shown that the glass transition is induced by freezing of the MRO, rather than the freezing of the nearest-neighbor shell. The implications of these results are discussed.

4.
Phys Rev E ; 104(6-1): 064109, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030901

RESUMO

Physical properties of liquids and glasses are controlled not only by the short-range order (SRO) in the nearest-neighbor atoms but also by the medium-range order (MRO) observed for atoms beyond the nearest neighbors. In this article the nature of the MRO as the descriptor of point-to-set atomic correlation is discussed focusing on simple liquids, such as metallic liquids. Through the results of x-ray diffraction and simulation with classical potentials we show that the third peak of the pair-distribution function, which describes the MRO, shows a distinct change in temperature dependence at the glass transition, whereas the first peak, which represents the SRO, changes smoothly through the glass transition. The result suggests that the glass transition is induced by the freezing of the MRO rather than that of the SRO, implying a major role of the MRO on the viscosity of supercooled liquid.

5.
Nat Commun ; 11(1): 6213, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277499

RESUMO

With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.

6.
Phys Rev E ; 102(4-1): 042615, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212574

RESUMO

Liquid fragility characterizes how steeply the viscosity of a glass-forming liquid decreases with increasing temperature above the glass transition. It is one of the most fundamental properties of a liquid, with high importance for science and application. Yet, its origin is unclear. Here we show that it is directly related to the structural coherence of the medium-range order (MRO) in liquid defined by the decay of the pair-distribution function with distance. The MRO can also be evaluated from the first peak of the structure function determined by x-ray or neutron diffraction, and it is a measure of the cooperativity of atomic motion in a diffusive event in supercooled liquids. These findings shed light on the mechanism of atomic transport in supercooled liquids.

7.
Front Chem ; 8: 579169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134277

RESUMO

The viscosity and the relaxation time of a glass-forming liquid vary over 15 orders of magnitude before the liquid freezes into a glass. The rate of the change with temperature is characterized by liquid fragility. The mechanism of such a spectacular behavior and the origin of fragility have long been discussed, but it remains unresolved because of the difficulty of carrying out experiments and constructing theories that bridge over a wide timescale from atomic (ps) to bulk (minutes). Through the x-ray diffraction measurement and molecular dynamics simulation for metallic liquids we suggest that large changes in viscosity can be caused by relatively small changes in the structural coherence which characterizes the medium-range order. Here the structural coherence does not imply that of atomic-scale structure, but it relates to the coarse-grained density fluctuations represented by the peaks in the pair-distribution function (PDF) beyond the nearest neighbors. The coherence length is related to fragility and increases with decreasing temperature, and it diverges only at a negative temperature. This analysis is compared with several current theories which predict a phase transition near the glass transition temperature.

8.
Phys Rev E ; 101(3-1): 030601, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289960

RESUMO

It is difficult to characterize by experiment the structural features of liquids and glasses which lack long-range translational periodicity in the structure. Here, we suggest that the height and shape of the first peak of the structure function S(Q) carry significant information about the nature of the medium-range order and the coherence of density correlations. It is further proposed that they indicate how ideal the liquid structure is. Here, the ideal state is defined by long-range density correlations, not by structural coherence at the atomic level. The analysis is applied to the S(Q) of metallic alloy liquids determined by x-ray diffraction and simulation. The ideality index defined here may provide a common parameter to characterize structural coherence among various disparate groups of liquids and glasses.

9.
J Phys Chem Lett ; 10(22): 7119-7125, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31693369

RESUMO

Electrolyte solutions are ubiquitous in materials in daily use and in biological systems. However, the understanding of their molecular and ionic dynamics, particularly those of their correlated motions, are elusive despite extensive experimental, theoretical, and numerical studies. Here we report the real-space observations of the molecular/ionic-correlated dynamics of aqueous salt (NaCl, NaBr, and NaI) solutions using the Van Hove functions obtained by high-resolution inelastic X-ray scattering measurement and molecular dynamics simulation. Our results directly depict the distance-dependent dynamics of aqueous salt solutions on the picosecond time scale and identify the changes in the anion-water correlations. This study demonstrates the capability of the real-space Van Hove function analysis to describe the local correlated dynamics in aqueous salt solutions.

10.
Nat Commun ; 10(1): 961, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814502

RESUMO

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting Al2O3 with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m½). The high toughness levels are attributed to brick pull-out and crack deflection along the ceramic/metal interfaces. Since these mechanisms are enabled by interfacial failure rather than failure within the metallic mortar, the potential for optimizing these bioinspired materials for damage tolerance has still not been fully realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA